About the Project

continued%20fractions

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: 1.12 Continued Fractions
§1.12 Continued Fractions
Equivalence
Series
Fractional Transformations
2: 18.40 Methods of Computation
The problem of moments is simply stated and the early work of Stieltjes, Markov, and Chebyshev on this problem was the origin of the understanding of the importance of both continued fractions and OP’s in many areas of analysis. … In what follows we consider only the simple, illustrative, case that μ ( x ) is continuously differentiable so that d μ ( x ) = w ( x ) d x , with w ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients α n , β n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). … The question is then: how is this possible given only F N ( z ) , rather than F ( z ) itself? F N ( z ) often converges to smooth results for z off the real axis for z at a distance greater than the pole spacing of the x n , this may then be followed by approximate numerical analytic continuation via fitting to lower order continued fractions (either Padé, see §3.11(iv), or pointwise continued fraction approximants, see Schlessinger (1968, Appendix)), to F N ( z ) and evaluating these on the real axis in regions of higher pole density that those of the approximating function. Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … In what follows this is accomplished in two ways: i) via the Lagrange interpolation of §3.3(i) ; and ii) by constructing a pointwise continued fraction, or PWCF, as follows: …
3: Bibliography C
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-Hamada (2007) Handbook of Continued Fractions for Special Functions. Kluwer Academic Publishers Group, Dordrecht.
  • A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones (2008) Handbook of Continued Fractions for Special Functions. Springer, New York.
  • 4: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 5: 8.17 Incomplete Beta Functions
    However, in the case of §8.17 it is straightforward to continue most results analytically to other real values of a , b , and x , and also to complex values. …
    §8.17(v) Continued Fraction
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    6: Bibliography W
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • 7: 20.11 Generalizations and Analogs
    In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). …
    8: Bibliography M
  • J. P. McClure and R. Wong (1979) Exact remainders for asymptotic expansions of fractional integrals. J. Inst. Math. Appl. 24 (2), pp. 139–147.
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 9: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • L. Lorentzen and H. Waadeland (1992) Continued Fractions with Applications. Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • 10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • J. M. Borwein and I. J. Zucker (1992) Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12 (4), pp. 519–526.