About the Project
NIST

contiguous relations (Heine)

AdvancedHelp

(0.002 seconds)

1—10 of 319 matching pages

1: 15.5 Derivatives and Contiguous Functions
§15.5 Derivatives and Contiguous Functions
§15.5(ii) Contiguous Functions
The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) . … An equivalent equation to the hypergeometric differential equation (15.10.1) is …Further contiguous relations include: …
2: 16.3 Derivatives and Contiguous Functions
§16.3 Derivatives and Contiguous Functions
§16.3(ii) Contiguous Functions
Two generalized hypergeometric functions F q p ( a ; b ; z ) are (generalized) contiguous if they have the same pair of values of p and q , and corresponding parameters differ by integers. If p q + 1 , then any q + 2 distinct contiguous functions are linearly related. Examples are provided by the following recurrence relations: …
3: 17.6 ϕ 1 2 Function
Heine’s First Transformation
Heine’s Second Tranformation
Heine’s Third Transformation
§17.6(iii) Contiguous Relations
Heine’s Contiguous Relations
4: 16.4 Argument Unity
The characterizing properties (18.22.2), (18.22.10), (18.22.19), (18.22.20), and (18.26.14) of the Hahn and Wilson class polynomials are examples of the contiguous relations mentioned in the previous three paragraphs. Contiguous balanced series have parameters shifted by an integer but still balanced. … … See Bailey (1964, §§4.3(7) and 7.6(1)) for the transformation formulas and Wilson (1978) for contiguous relations. …
5: 18.9 Recurrence Relations and Derivatives
§18.9 Recurrence Relations and Derivatives
§18.9(i) Recurrence Relations
with initial values p 0 ( x ) = 1 and p 1 ( x ) = A 0 x + B 0 . …
Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
p n ( x ) A n B n C n
§18.9(ii) Contiguous Relations in the Parameters and the Degree
6: 18.11 Relations to Other Functions
§18.11 Relations to Other Functions
Ultraspherical
Laguerre
Hermite
§18.11(ii) Formulas of Mehler–Heine Type
7: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • 8: 14.28 Sums
    §14.28(ii) Heine’s Formula
    9: Bibliography S
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • J. Segura (2008) Interlacing of the zeros of contiguous hypergeometric functions. Numer. Algorithms 49 (1-4), pp. 387–407.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • 10: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.