About the Project

connection%20formulas%20across%20transition%20points

AdvancedHelp

(0.004 seconds)

1—10 of 396 matching pages

1: 36.4 Bifurcation Sets
§36.4(i) Formulas
K = 2 , cusp bifurcation set: … K = 3 , swallowtail bifurcation set: … Elliptic umbilic bifurcation set (codimension three): for fixed z , the section of the bifurcation set is a three-cusped astroid … Hyperbolic umbilic bifurcation set (codimension three): …
2: 36.5 Stokes Sets
where j denotes a real critical point (36.4.1) or (36.4.2), and μ denotes a critical point with complex t or s , t , connected with j by a steepest-descent path (that is, a path where Φ = constant ) in complex t or ( s , t ) space. … The Stokes set is itself a cusped curve, connected to the cusp of the bifurcation set: … They generate a pair of cusp-edged sheets connected to the cusped sheets of the swallowtail bifurcation set (§36.4). … This part of the Stokes set connects two complex saddles. … In Figure 36.5.4 the part of the Stokes surface inside the bifurcation set connects two complex saddles. …
3: William P. Reinhardt
This is closely connected with his interests in classical dynamical “chaos,” an area where he coauthored a book, Chaos in atomic physics with Reinhold Blümel. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    4: 25.12 Polylogarithms
    In the complex plane Li 2 ( z ) has a branch point at z = 1 . …
    25.12.3 Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ( ln ( 1 z ) ) 2 , z [ 1 , ) .
    25.12.6 Li 2 ( x ) + Li 2 ( 1 x ) = 1 6 π 2 ( ln x ) ln ( 1 x ) , 0 < x < 1 .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: Bibliography O
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • F. W. J. Olver (1978) General connection formulae for Liouville-Green approximations in the complex plane. Philos. Trans. Roy. Soc. London Ser. A 289, pp. 501–548.
  • 7: Bibliography W
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • R. Wong and H. Y. Zhang (2009a) On the connection formulas of the fourth Painlevé transcendent. Anal. Appl. (Singap.) 7 (4), pp. 419–448.
  • R. Wong and H. Y. Zhang (2009b) On the connection formulas of the third Painlevé transcendent. Discrete Contin. Dyn. Syst. 23 (1-2), pp. 541–560.
  • 8: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    9: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    10: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.