About the Project

connection with Fresnel integrals

AdvancedHelp

(0.001 seconds)

1—10 of 466 matching pages

1: 7.2 Definitions
§7.2(ii) Dawson’s Integral
§7.2(iii) Fresnel Integrals
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection.
Values at Infinity
§7.2(iv) Auxiliary Functions
2: 1.14 Integral Transforms
§1.14 Integral Transforms
where the last integral denotes the Cauchy principal value (1.4.25). … If f ( t ) is absolutely integrable on [ 0 , R ] for every finite R , and the integral (1.14.47) converges, then …
§1.14(viii) Compendia
For more extensive tables of the integral transforms of this section and tables of other integral transforms, see Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2015), Marichev (1983), Oberhettinger (1972, 1974, 1990), Oberhettinger and Badii (1973), Oberhettinger and Higgins (1961), Prudnikov et al. (1986a, b, 1990, 1992a, 1992b).
3: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
§8.19(i) Definition and Integral Representations
Other Integral Representations
§8.19(ii) Graphics
§8.19(x) Integrals
4: 6.2 Definitions and Interrelations
§6.2(i) Exponential and Logarithmic Integrals
The logarithmic integral is defined by …
§6.2(ii) Sine and Cosine Integrals
5: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(iii) Integral Representations
§8.21(iv) Interrelations
§8.21(v) Special Values
6: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
§7.18(i) Definition
§7.18(iii) Properties
Hermite Polynomials
7: 19.16 Definitions
§19.16(i) Symmetric Integrals
All other elliptic cases are integrals of the second kind. …(Note that R C ( x , y ) is not an elliptic integral.) … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
8: 36.2 Catastrophes and Canonical Integrals
§36.2 Catastrophes and Canonical Integrals
§36.2(i) Definitions
Canonical Integrals
§36.2(iii) Symmetries
9: 19.2 Definitions
§19.2(i) General Elliptic Integrals
§19.2(ii) Legendre’s Integrals
The paths of integration are the line segments connecting the limits of integration. …
§19.2(iii) Bulirsch’s Integrals
§19.2(iv) A Related Function: R C ( x , y )
10: 7.20 Mathematical Applications
§7.20(i) Asymptotics
For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). …
§7.20(ii) Cornu’s Spiral
Let the set { x ( t ) , y ( t ) , t } be defined by x ( t ) = C ( t ) , y ( t ) = S ( t ) , t 0 . … For applications in statistics and probability theory, also for the role of the normal distribution functions (the error functions and probability integrals) in the asymptotics of arbitrary probability density functions, see Johnson et al. (1994, Chapter 13) and Patel and Read (1982, Chapters 2 and 3).