About the Project

conjugate Poisson integral

AdvancedHelp

(0.002 seconds)

11—20 of 462 matching pages

11: 1.8 Fourier Series
1.8.6_1 1 π π π f ( x ) g ( x ) ¯ d x = 1 2 a 0 a 0 ¯ + n = 1 ( a n a n ¯ + b n b n ¯ ) ,
1.8.6_2 1 2 π π π f ( x ) g ( x ) ¯ d x = n = c n c n ¯ .
(1.8.10) continues to apply if either a or b or both are infinite and/or f ( x ) has finitely many singularities in ( a , b ) , provided that the integral converges uniformly (§1.5(iv)) at a , b , and the singularities for all sufficiently large λ . …
§1.8(iv) Poisson’s Summation Formula
It follows from definition (1.14.1) that the integral in (1.8.14) is equal to 2 π ( f ) ( 2 π n ) . …
12: 18.33 Polynomials Orthogonal on the Unit Circle
where the bar signifies complex conjugate. … where the bar again signifies complex conjugate. … where the bar signifies complex conjugate and κ n > 0 , κ 0 = 1 . … for n > 0 , while Φ 1 ( z ) = z α 0 ¯ . …
13: 1.9 Calculus of a Complex Variable
Complex Conjugate
1.9.11 z ¯ = x i y ,
If f ( z ( t 0 ) ) = , a t 0 b , then the integral is defined analogously to the infinite integrals in §1.4(v). …
Cauchy’s Integral Formula
Poisson Integral
14: 36.8 Convergent Series Expansions
§36.8 Convergent Series Expansions
For multinomial power series for Ψ K ( 𝐱 ) , see Connor and Curtis (1982).
36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
36.8.5 f n ( ζ , ζ ¯ ) = c n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + c n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) ,
15: Bibliography H
  • L. Habsieger (1988) Une q -intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 16: 14.31 Other Applications
    §14.31(i) Toroidal Functions
    Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). … These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). …
    17: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    A complex linear vector space V is called an inner product space if an inner product u , v is defined for all u , v V with the properties: (i) u , v is complex linear in u ; (ii) u , v = v , u ¯ ; (iii) v , v 0 ; (iv) if v , v = 0 then v = 0 . … where the integral kernel is given by … Should an eigenvalue correspond to more than a single linearly independent eigenfunction, namely a multiplicity greater than one, all such eigenfunctions will always be implied as being part of any sums or integrals over the spectrum. … Also, because q is real-valued, f N z iff f ¯ N z ¯ . … Integral transforms (10.22.78) and (10.22.79) are examples of the utility of these extensions. …
    18: 7.13 Zeros
    The other zeros of erf z are z n , z ¯ n , z ¯ n . … The other zeros of erfc z are z ¯ n . The zeros of w ( z ) are i z n and i z ¯ n . …
    §7.13(iii) Zeros of the Fresnel Integrals
    Then z n , z ¯ n , z ¯ n , i z n , i z n , i z ¯ n , i z ¯ n are also zeros of the same integral. …
    19: 19.18 Derivatives and Differential Equations
    §19.18(i) Derivatives
    §19.18(ii) Differential Equations
    and also a system of n ( n 1 ) / 2 Euler–Poisson differential equations (of which only n 1 are independent): … The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). The function w = R a ( 1 2 , 1 2 ; x + y , x y ) satisfies an Euler–Poisson–Darboux equation: …
    20: 36.11 Leading-Order Asymptotics
    §36.11 Leading-Order Asymptotics
    and far from the bifurcation set, the cuspoid canonical integrals are approximated by …
    36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
    36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
    36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .