About the Project

confluent form

AdvancedHelp

(0.003 seconds)

11—20 of 41 matching pages

11: 13.27 Mathematical Applications
§13.27 Mathematical Applications
Confluent hypergeometric functions are connected with representations of the group of third-order triangular matrices. The elements of this group are of the form … …
12: 13.14 Definitions and Basic Properties
Although M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , , many formulas containing M κ , μ ( z ) continue to apply in their limiting form. …
13: 13.4 Integral Representations
13.4.1 𝐌 ( a , b , z ) = 1 Γ ( a ) Γ ( b a ) 0 1 e z t t a 1 ( 1 t ) b a 1 d t , b > a > 0 ,
13.4.16 𝐌 ( a , b , z ) = 1 2 π i Γ ( a ) i i Γ ( a + t ) Γ ( t ) Γ ( b + t ) z t d t , | ph z | < 1 2 π ,
14: 13.3 Recurrence Relations and Derivatives
13.3.14 ( a + 1 ) z U ( a + 2 , b + 2 , z ) + ( z b ) U ( a + 1 , b + 1 , z ) U ( a , b , z ) = 0 .
15: 13.8 Asymptotic Approximations for Large Parameters
13.8.9 M ( a , b , x ) = Γ ( b ) e 1 2 x ( ( 1 2 b a ) x ) 1 2 1 2 b ( J b 1 ( 2 x ( b 2 a ) ) + env J b 1 ( 2 x ( b 2 a ) ) O ( | a | 1 2 ) ) ,
13.8.10 U ( a , b , x ) = Γ ( 1 2 b a + 1 2 ) e 1 2 x x 1 2 1 2 b ( cos ( a π ) J b 1 ( 2 x ( b 2 a ) ) sin ( a π ) Y b 1 ( 2 x ( b 2 a ) ) + env Y b 1 ( 2 x ( b 2 a ) ) O ( | a | 1 2 ) ) ,
16: 13.21 Uniform Asymptotic Approximations for Large κ
13.21.1 M κ , μ ( x ) = x Γ ( 2 μ + 1 ) κ μ ( J 2 μ ( 2 x κ ) + env J 2 μ ( 2 x κ ) O ( κ 1 2 ) ) ,
13.21.6 M κ , μ ( 4 κ x ) = 2 Γ ( 2 μ + 1 ) κ μ 1 2 ( x ζ 1 + x ) 1 4 I 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
13.21.7 W κ , μ ( 4 κ x ) = 8 / π e κ κ κ 1 2 ( x ζ 1 + x ) 1 4 K 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
For a uniform asymptotic expansion in terms of Airy functions for W κ , μ ( 4 κ x ) when κ is large and positive, μ is real with | μ | bounded, and x [ δ , ) see Olver (1997b, Chapter 11, Ex. 7.3). This expansion is simpler in form than the expansions of Dunster (1989) that correspond to the approximations given in §13.21(iii), but the conditions on μ are more restrictive. …
17: Bibliography T
  • N. M. Temme (1978) Uniform asymptotic expansions of confluent hypergeometric functions. J. Inst. Math. Appl. 22 (2), pp. 215–223.
  • N. M. Temme (1983) The numerical computation of the confluent hypergeometric function U ( a , b , z ) . Numer. Math. 41 (1), pp. 63–82.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 18: Mathematical Introduction
    Similarly in the case of confluent hypergeometric functions (§13.2(i)). Other examples are: (a) the notation for the Ferrers functions—also known as associated Legendre functions on the cut—for which existing notations can easily be confused with those for other associated Legendre functions (§14.1); (b) the spherical Bessel functions for which existing notations are unsymmetric and inelegant (§§10.47(i) and 10.47(ii)); and (c) elliptic integrals for which both Legendre’s forms and the more recent symmetric forms are treated fully (Chapter 19). … For equations or other technical information that appeared previously in AMS 55, the DLMF usually includes the corresponding AMS 55 equation number, or other form of reference, together with corrections, if needed. …
    19: 18.11 Relations to Other Functions
    Laguerre
    Hermite
    §18.11(ii) Formulas of Mehler–Heine Type
    Jacobi
    Hermite
    20: 13.23 Integrals
    13.23.8 1 Γ ( 1 + 2 μ ) 0 cos ( 2 x t ) e 1 2 t 2 t 2 μ 1 M κ , μ ( t 2 ) d t = π e 1 2 x 2 x μ + κ 1 2 Γ ( 1 2 + μ + κ ) W 1 2 κ 3 2 μ , 1 2 κ + 1 2 μ ( x 2 ) , ( κ + μ ) > 1 2 .
    13.23.10 1 Γ ( 1 + 2 μ ) 0 e 1 2 t t 1 2 ( ν 1 ) μ M κ , μ ( t ) J ν ( 2 x t ) d t = e 1 2 x x 1 2 ( κ + μ 3 2 ) Γ ( 1 2 + μ + κ ) W 1 2 ( κ 3 μ + ν + 1 2 ) , 1 2 ( κ + μ ν 1 2 ) ( x ) , x > 0 , 1 < ν < 2 ( μ + κ ) + 1 2 .
    13.23.13 g ( μ ) = 1 Γ ( 1 + 2 μ ) 0 f ( x ) x 3 2 M κ , μ ( x ) d x ,
    13.23.14 f ( x ) = 1 π i x μ 1 i μ 1 + i μ g ( μ ) Γ ( 1 2 + μ κ ) W κ , μ ( x ) d μ .
    Additional integrals involving confluent hypergeometric functions can be found in Apelblat (1983, pp. 388–392), Erdélyi et al. (1954b), Gradshteyn and Ryzhik (2000, §7.6), and Prudnikov et al. (1990, §§1.13, 1.14, 2.19, 4.2.2). …