About the Project

confluent Heun functions

AdvancedHelp

(0.004 seconds)

1—10 of 13 matching pages

1: 31.12 Confluent Forms of Heun’s Equation
This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . Mathieu functions (Chapter 28), spheroidal wave functions (Chapter 30), and Coulomb spheroidal functions30.12) are special cases of solutions of the confluent Heun equation. …
2: 31.17 Physical Applications
Heun functions appear in the theory of black holes (Kerr (1963), Teukolsky (1972), Chandrasekhar (1984), Suzuki et al. (1998), Kalnins et al. (2000)), lattice systems in statistical mechanics (Joyce (1973, 1994)), dislocation theory (Lay and Slavyanov (1999)), and solution of the Schrödinger equation of quantum mechanics (Bay et al. (1997), Tolstikhin and Matsuzawa (2001), and Hall et al. (2010)). … More applications—including those of generalized spheroidal wave functions and confluent Heun functions in mathematical physics, astrophysics, and the two-center problem in molecular quantum mechanics—can be found in Leaver (1986) and Slavyanov and Lay (2000, Chapter 4). …
3: 31.10 Integral Equations and Representations
For integral equations for special confluent Heun functions31.12) see Kazakov and Slavyanov (1996).
4: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
5: Gerhard Wolf
Wolf has published papers on Mathieu functions, orthogonal polynomials, and Heun functions. His book Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies (with J. … Schmidt) of the Chapter Double Confluent Heun Equation in the book Heun’s Differential Equations (A. …
  • Wolf served as a Validator for the original release and publication in May 2010 of the NIST Digital Library of Mathematical Functions and the NIST Handbook of Mathematical Functions.
    6: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • J. Wimp (1965) On the zeros of a confluent hypergeometric function. Proc. Amer. Math. Soc. 16 (2), pp. 281–283.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 7: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • P. A. Becker (1997) Normalization integrals of orthogonal Heun functions. J. Math. Phys. 38 (7), pp. 3692–3699.
  • A. A. Bogush and V. S. Otchik (1997) Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation. J. Phys. A 30 (2), pp. 559–571.
  • H. Buchholz (1969) The Confluent Hypergeometric Function with Special Emphasis on Its Applications. Springer-Verlag, New York.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • 8: Bibliography S
  • G. Shimura (1982) Confluent hypergeometric functions on tube domains. Math. Ann. 260 (3), pp. 269–302.
  • H. Skovgaard (1966) Uniform Asymptotic Expansions of Confluent Hypergeometric Functions and Whittaker Functions. Doctoral dissertation, University of Copenhagen, Vol. 1965, Jul. Gjellerups Forlag, Copenhagen.
  • L. J. Slater (1960) Confluent Hypergeometric Functions. Cambridge University Press, Cambridge-New York.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • A. D. Smirnov (1960) Tables of Airy Functions and Special Confluent Hypergeometric Functions. Pergamon Press, New York.
  • 9: Bibliography D
  • H. T. Davis (1933) Tables of Higher Mathematical Functions I. Principia Press, Bloomington, Indiana.
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 10: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • T. Morita (2013) A connection formula for the q -confluent hypergeometric function. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 050, 13.