About the Project

computation%20of%20coefficients

AdvancedHelp

(0.003 seconds)

1—10 of 27 matching pages

1: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • A. Bar-Shalom and M. Klapisch (1988) NJGRAF: An efficient program for calculation of general recoupling coefficients by graphical analysis, compatible with NJSYM. Comput. Phys. Comm. 50 (3), pp. 375–393.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • P. G. Burke (1970) A program to calculate a general recoupling coefficient. Comput. Phys. Comm. 1 (4), pp. 241–250.
  • 2: 11.6 Asymptotic Expansions
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    These and higher coefficients c k ( λ ) can be computed via the representations in Nemes (2015b). …
    3: 10.75 Tables
  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.20(i), including ζ and ( 4 ζ / ( 1 x 2 ) ) 1 4 as functions of x ( = z ) and the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , D k ( ζ ) as functions of ζ . These enable J ν ( ν x ) , Y ν ( ν x ) , J ν ( ν x ) , Y ν ( ν x ) to be computed to 10S when ν 15 , except in the neighborhoods of zeros.

  • Olver (1960) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 2 ) 20 1 2 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.41(ii), including η and the coefficients U k ( p ) , V k ( p ) as functions of p = ( 1 + x 2 ) 1 2 . These enable I ν ( ν x ) , K ν ( ν x ) , I ν ( ν x ) , K ν ( ν x ) to be computed to 10S when ν 16 .

  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 4: Bibliography N
  • National Bureau of Standards (1944) Tables of Lagrangian Interpolation Coefficients. Columbia University Press, New York.
  • National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 5: Bibliography S
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • K. Srinivasa Rao and K. Venkatesh (1978) New Fortran programs for angular momentum coefficients. Comput. Phys. Comm. 15 (3-4), pp. 227–235.
  • K. Srinivasa Rao (1981) Computation of angular momentum coefficients using sets of generalized hypergeometric functions. Comput. Phys. Comm. 22 (2-3), pp. 297–302.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 6: Bibliography D
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • O. Dragoun and G. Heuser (1971) A program to calculate internal conversion coefficients for all atomic shells without screening. Comput. Phys. Comm. 2 (7), pp. 427–432.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 7: 8.17 Incomplete Beta Functions
    8.17.5 I x ( m , n m + 1 ) = j = m n ( n j ) x j ( 1 x ) n j , m , n positive integers; 0 x < 1 .
    8.17.22 I x ( a , b ) = x a ( 1 x ) b a B ( a , b ) ( 1 1 + d 1 1 + d 2 1 + d 3 1 + ) ,
    where … For x > ( a + 1 ) / ( a + b + 2 ) or 1 x < ( b + 1 ) / ( a + b + 2 ) , more rapid convergence is obtained by computing I 1 x ( b , a ) and using (8.17.4). …
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    8: 3.8 Nonlinear Equations
    §3.8(iv) Zeros of Polynomials
    However, when the coefficients are all real, complex arithmetic can be avoided by the following iterative process. … For further information on the computation of zeros of polynomials see McNamee (2007). … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    9: 6.20 Approximations
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 321–322) covers Ein ( x ) and Ein ( x ) for 0 x 8 (the Chebyshev coefficients are given to 20D); E 1 ( x ) for x 5 (20D), and Ei ( x ) for x 8 (15D). Coefficients for the sine and cosine integrals are given on pp. 325–327.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function (§13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 10: Bibliography M
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • A. J. MacLeod (2002b) The efficient computation of some generalised exponential integrals. J. Comput. Appl. Math. 148 (2), pp. 363–374.
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • X. Merrheim (1994) The computation of elementary functions in radix 2 p . Computing 53 (3-4), pp. 219–232.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.