About the Project

complex%20variables

AdvancedHelp

(0.004 seconds)

1—10 of 34 matching pages

1: 6.19 Tables
§6.19(ii) Real Variables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • §6.19(iii) Complex Variables, z = x + i y
  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 2: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner and W. T. Martin (1948) Several Complex Variables. Princeton Mathematical Series, Vol. 10, Princeton University Press, Princeton, N.J..
  • 3: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    §22.3(ii) Real Variables: Surfaces
    §22.3(iii) Complex z ; Real k
    See accompanying text
    Figure 22.3.21: ns ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . … Magnify 3D Help
    §22.3(iv) Complex k
    4: 15.10 Hypergeometric Differential Equation
    15.10.1 z ( 1 z ) d 2 w d z 2 + ( c ( a + b + 1 ) z ) d w d z a b w = 0 .
    15.10.3 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( 1 c ) z c ( 1 z ) c a b 1 .
    15.10.5 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( a + b c ) z c ( 1 z ) c a b 1 .
    15.10.7 𝒲 { f 1 ( z ) , f 2 ( z ) } = ( a b ) z c ( z 1 ) c a b 1 .
    The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
    5: 25.11 Hurwitz Zeta Function
    ζ ( s , a ) has a meromorphic continuation in the s -plane, its only singularity in being a simple pole at s = 1 with residue 1 . …
    25.11.2 ζ ( s , 1 ) = ζ ( s ) .
    25.11.3 ζ ( s , a ) = ζ ( s , a + 1 ) + a s ,
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    25.11.42 ζ ( s , α + i β ) 0 ,
    6: 5.22 Tables
    For early tables for both real and complex variables see Fletcher et al. (1962), Lebedev and Fedorova (1960), and Luke (1975, p. 21).
    §5.22(ii) Real Variables
    Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. …
    §5.22(iii) Complex Variables
    7: 9.18 Tables
    §9.18(ii) Real Variables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • §9.18(iii) Complex Variables
  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • 8: 25.12 Polylogarithms
    In the complex plane Li 2 ( z ) has a branch point at z = 1 . …
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    For real or complex s and z the polylogarithm Li s ( z ) is defined by … For each fixed complex s the series defines an analytic function of z for | z | < 1 . …
    9: 7.23 Tables
    §7.23(ii) Real Variables
    §7.23(iii) Complex Variables, z = x + i y
  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • 10: 30.9 Asymptotic Approximations and Expansions
    2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
    For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). … The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …