About the Project

complementary error function

AdvancedHelp

(0.008 seconds)

11—20 of 46 matching pages

11: 7.2 Definitions
7.2.2 erfc z = 2 π z e t 2 d t = 1 erf z ,
7.2.3 w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 d t ) = e z 2 erfc ( i z ) .
erf z , erfc z , and w ( z ) are entire functions of z , as is F ( z ) in the next subsection. …
lim z erfc z = 0 , | ph z | 1 4 π δ ( < 1 4 π ) .
12: 7.4 Symmetry
7.4.2 erfc ( z ) = 2 erfc ( z ) ,
13: 12.7 Relations to Other Functions
§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
12.7.6 U ( n + 1 2 , z ) = D n 1 ( z ) = π 2 ( 1 ) n n ! e 1 4 z 2 d n ( e 1 2 z 2 erfc ( z / 2 ) ) d z n , n = 0 , 1 , 2 , ,
12.7.7 U ( n + 1 2 , z ) = e 1 4 z 2 𝐻ℎ n ( z ) = π  2 1 2 ( n 1 ) e 1 4 z 2 i n erfc ( z / 2 ) , n = 1 , 0 , 1 , .
14: 7.11 Relations to Other Functions
7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
15: 7.14 Integrals
7.14.1 0 e 2 i a t erfc ( b t ) d t = 1 a π F ( a b ) + i 2 a ( 1 e ( a / b ) 2 ) , a , | ph b | < 1 4 π .
7.14.2 0 e a t erf ( b t ) d t = 1 a e a 2 / ( 4 b 2 ) erfc ( a 2 b ) , a > 0 , | ph b | < 1 4 π ,
7.14.4 0 e ( a b ) t erfc ( a t + c t ) d t = e 2 ( a c + b c ) b ( a + b ) , | ph a | < 1 2 π , b > 0 , c 0 .
16: 12.13 Sums
12.13.6 n ! U ( n + 1 2 , z ) = i n e 1 2 z 2 erfc ( z / 2 ) U ( n 1 2 , i z ) + m = 1 1 2 n + 1 2 U ( 2 m n 1 2 , z ) , n = 0 , 1 , 2 , .
For erfc see §7.2(i). …
17: 7.7 Integral Representations
7.7.1 erfc z = 2 π e z 2 0 e z 2 t 2 t 2 + 1 d t , | ph z | 1 4 π ,
7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
7.7.6 x e ( a t 2 + 2 b t + c ) d t = 1 2 π a e ( b 2 a c ) / a erfc ( a x + b a ) , a > 0 .
7.7.7 x e a 2 t 2 ( b 2 / t 2 ) d t = π 4 a ( e 2 a b erfc ( a x + ( b / x ) ) + e 2 a b erfc ( a x ( b / x ) ) ) , x > 0 , | ph a | < 1 4 π .
18: 7.13 Zeros
§7.13(ii) Zeros of erfc z
The other zeros of erfc z are z ¯ n . …
Table 7.13.2: Zeros x n + i y n of erfc z .
n x n y n
In consequence of (7.5.5) and (7.5.10), zeros of ( z ) are related to zeros of erfc z . Thus if z n is a zero of erfc z 7.13(ii)), then ( 1 + i ) z n / π is a zero of ( z ) . …
19: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
8.12.4 Q ( a , z ) = 1 2 erfc ( η a / 2 ) + S ( a , η ) ,
d ( ± χ ) = 1 2 π e χ 2 / 2 erfc ( ± χ / 2 ) ,
For other uniform asymptotic approximations of the incomplete gamma functions in terms of the function erfc see Paris (2002b) and Dunster (1996a). … These expansions involve the inverse error function inverfc ( x ) 7.17), and are uniform with respect to q [ 0 , 1 ] . …
20: 7.20 Mathematical Applications
For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
7.20.1 1 σ 2 π x e ( t m ) 2 / ( 2 σ 2 ) d t = 1 2 erfc ( m x σ 2 ) = Q ( m x σ ) = P ( x m σ ) .