About the Project

complementary

AdvancedHelp

(0.001 seconds)

1—10 of 100 matching pages

1: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
§7.18(i) Definition
§7.18(iii) Properties
Hermite Polynomials
2: 29.10 Lamé Functions with Imaginary Periods
𝐸𝑐 ν 2 m ( i ( z K i K ) , k 2 ) ,
𝐸𝑐 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
𝐸𝑠 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …
3: 7.22 Methods of Computation
§7.22(iii) Repeated Integrals of the Complementary Error Function
The recursion scheme given by (7.18.1) and (7.18.7) can be used for computing i n erfc ( x ) . … The computation of these functions can be based on algorithms for the complementary error function with complex argument; compare (7.19.3). …
4: 29.17 Other Solutions
29.17.1 F ( z ) = E ( z ) i K z d u ( E ( u ) ) 2 .
Lamé–Wangerin functions are solutions of (29.2.1) with the property that ( sn ( z , k ) ) 1 / 2 w ( z ) is bounded on the line segment from i K to 2 K + i K . …
5: 7.1 Special Notation
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . …
6: 22.4 Periods, Poles, and Zeros
The other poles are at congruent points, which is the set of points obtained by making translations by 2 m K + 2 n i K , where m , n . … Figure 22.4.1 illustrates the locations in the z -plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices 0 , 2 K , 2 K + 2 i K , 2 i K . … Figure 22.4.2 depicts the fundamental unit cell in the z -plane, with vertices s = 0 , c = K , d = K + i K , n = i K . The set of points z = m K + n i K , m , n , comprise the lattice for the 12 Jacobian functions; all other lattice unit cells are generated by translation of the fundamental unit cell by m K + n i K , where again m , n . … This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . …
7: 7.3 Graphics
See accompanying text
Figure 7.3.1: Complementary error functions erfc x and erfc ( 10 x ) , 3 x 3 . Magnify
See accompanying text
Figure 7.3.6: | erfc ( x + i y ) | , 3 x 3 , 3 y 3 . … Magnify 3D Help
8: 7.25 Software
§7.25(ii) erf x , erfc x , i n erfc ( x ) , x
§7.25(iii) erf z , erfc z , w ( z ) , z
9: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
10: 7.21 Physical Applications
§7.21 Physical Applications
Carslaw and Jaeger (1959) gives many applications and points out the importance of the repeated integrals of the complementary error function i n erfc ( z ) . …