About the Project

comparison with Gauss quadrature

AdvancedHelp

(0.001 seconds)

11—20 of 151 matching pages

11: 9.17 Methods of Computation
For details, including the application of a generalized form of Gaussian quadrature, see Gordon (1969, Appendix A) and Schulten et al. (1979). … The second method is to apply generalized Gauss–Laguerre quadrature3.5(v)) to the integral (9.5.8). … For quadrature methods for Scorer functions see Gil et al. (2001), Lee (1980), and Gordon (1970, Appendix A); but see also Gautschi (1983). …
12: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • G. H. Golub and J. H. Welsch (1969) Calculation of Gauss quadrature rules. Math. Comp. 23 (106), pp. 221–230.
  • 13: 15.19 Methods of Computation
    The Gauss series (15.2.1) converges for | z | < 1 . … Large values of | a | or | b | , for example, delay convergence of the Gauss series, and may also lead to severe cancellation. For fast computation of F ( a , b ; c ; z ) with a , b and c complex, and with application to Pöschl–Teller–Ginocchio potential wave functions, see Michel and Stoitsov (2008). … Gauss quadrature approximations are discussed in Gautschi (2002b). … For example, in the half-plane z 1 2 we can use (15.12.2) or (15.12.3) to compute F ( a , b ; c + N + 1 ; z ) and F ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
    14: 6.18 Methods of Computation
    Quadrature of the integral representations is another effective method. For example, the Gauss–Laguerre formula (§3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula (§3.5(v)) see Tooper and Mark (1968). … Power series, asymptotic expansions, and quadrature can also be used to compute the functions f ( z ) and g ( z ) . …
    15: Bibliography X
  • H. Xiao, V. Rokhlin, and N. Yarvin (2001) Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 17 (4), pp. 805–838.
  • 16: 13.6 Relations to Other Functions
    For the definition of F 0 2 ( a , a b + 1 ; ; z 1 ) when neither a nor a b + 1 is a nonpositive integer see §16.5. …
    17: Bibliography T
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • L. N. Trefethen (2011) Six myths of polynomial interpolation and quadrature. Math. Today (Southend-on-Sea) 47 (4), pp. 184–188.
  • 18: Bibliography F
  • B. R. Fabijonas, D. W. Lozier, and J. M. Rappoport (2003) Algorithms and codes for the Macdonald function: Recent progress and comparisons. J. Comput. Appl. Math. 161 (1), pp. 179–192.
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • 19: Bibliography B
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • F. L. Bauer, H. Rutishauser, and E. Stiefel (1963) New Aspects in Numerical Quadrature. In Proc. Sympos. Appl. Math., Vol. XV, pp. 199–218.
  • R. Bulirsch and H. Rutishauser (1968) Interpolation und genäherte Quadratur. In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.), Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 141, pp. 232–319.
  • 20: 28.5 Second Solutions fe n , ge n
    See accompanying text
    Figure 28.5.1: fe 0 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 0 ( x , 0.5 ) . Magnify
    See accompanying text
    Figure 28.5.2: fe 0 ( x , 1 ) for 0 x 2 π and (for comparison) ce 0 ( x , 1 ) . Magnify
    See accompanying text
    Figure 28.5.3: fe 1 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 1 ( x , 0.5 ) . Magnify
    See accompanying text
    Figure 28.5.4: fe 1 ( x , 1 ) for 0 x 2 π and (for comparison) ce 1 ( x , 1 ) . Magnify
    See accompanying text
    Figure 28.5.5: ge 1 ( x , 0.5 ) for 0 x 2 π and (for comparison) se 1 ( x , 0.5 ) . Magnify