About the Project

comparison with Clenshaw–Curtis formula

AdvancedHelp

(0.002 seconds)

11—20 of 261 matching pages

11: Bibliography T
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. Sūrikaisekikenkyūsho Kōkyūroku (931), pp. 70–99.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • 12: Bibliography E
  • D. Elliott (1998) The Euler-Maclaurin formula revisited. J. Austral. Math. Soc. Ser. B 40 (E), pp. E27–E76 (electronic).
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • G. A. Evans and J. R. Webster (1999) A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112 (1-2), pp. 55–69.
  • 13: DLMF Project News
    error generating summary
    14: 27.12 Asymptotic Formulas: Primes
    §27.12 Asymptotic Formulas: Primes
    Descriptions and comparisons of pseudoprime tests are given in Bressoud and Wagon (2000, §§2.4, 4.2, and 8.2) and Crandall and Pomerance (2005, §§3.4–3.6). …
    15: 20.9 Relations to Other Functions
    The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
    16: 28.34 Methods of Computation
  • (b)

    Representations for w I ( π ; a , ± q ) with limit formulas for special solutions of the recurrence relations §28.4(ii) for fixed a and q ; see Schäfke (1961a).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).

  • 17: 36.15 Methods of Computation
    Far from the bifurcation set, the leading-order asymptotic formulas of §36.11 reproduce accurately the form of the function, including the geometry of the zeros described in §36.7. … For details, see Connor and Curtis (1982) and Kirk et al. (2000). …
    18: Bibliography F
  • B. R. Fabijonas, D. W. Lozier, and J. M. Rappoport (2003) Algorithms and codes for the Macdonald function: Recent progress and comparisons. J. Comput. Appl. Math. 161 (1), pp. 179–192.
  • J. P. M. Flude (1998) The Edmonds asymptotic formulas for the 3 j and 6 j symbols. J. Math. Phys. 39 (7), pp. 3906–3915.
  • G. Freud (1976) On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76 (1), pp. 1–6.
  • 19: Bibliography L
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • L. Lorch (2002) Comparison of a pair of upper bounds for a ratio of gamma functions. Math. Balkanica (N.S.) 16 (1-4), pp. 195–202.
  • 20: 15.2 Definitions and Analytical Properties
    Because of the analytic properties with respect to a , b , and c , it is usually legitimate to take limits in formulas involving functions that are undefined for certain values of the parameters. … This formula is also valid when c = m , = 0 , 1 , 2 , , provided that we use the interpretation … For comparison of F ( a , b ; c ; z ) and 𝐅 ( a , b ; c ; z ) , with the former using the limit interpretation (15.2.5), see Figures 15.3.6 and 15.3.7. … Formula (15.4.6) reads F ( a , b ; a ; z ) = ( 1 z ) b . …