# common

(0.001 seconds)

## 1—10 of 36 matching pages

##### 1: 21.8 Abelian Functions
For every Abelian function, there is a positive integer $n$, such that the Abelian function can be expressed as a ratio of linear combinations of products with $n$ factors of Riemann theta functions with characteristics that share a common period lattice. …
##### 2: 24.1 Special Notation
 $j,k,\ell,m,n$ integers, nonnegative unless stated otherwise. … greatest common divisor of $k,m$. …
Among various older notations, the most common one is …
##### 3: 27.1 Special Notation
 $d,k,m,n$ positive integers (unless otherwise indicated). … greatest common divisor of $m,n$. If $\left(m,n\right)=1$, $m$ and $n$ are called relatively prime, or coprime. greatest common divisor of $d_{1},\dots,d_{n}$. …
##### 4: 27.3 Multiplicative Properties
27.3.7 $\sigma_{\alpha}\left(m\right)\sigma_{\alpha}\left(n\right)=\sum_{d\mathbin{|}% \left(m,n\right)}d^{\alpha}\sigma_{\alpha}\left(\frac{mn}{d^{2}}\right),$
##### 5: Viewing DLMF Interactive 3D Graphics
WebGL is supported in the current versions of most common web browsers. …
##### 6: 31.17 Physical Applications
for the common eigenfunction $\Psi(\mathbf{x})=\Psi(x_{s},x_{t},x_{u})$, where $a$ is the coupling parameter of interacting spins. …
31.17.4 $\Psi(\mathbf{x})=(z_{1}z_{2})^{-s-\frac{1}{4}}((z_{1}-1)(z_{2}-1))^{-t-\frac{1% }{4}}\*((z_{1}-a)(z_{2}-a))^{-u-\frac{1}{4}}w(z_{1})w(z_{2}),$
##### 7: 27.8 Dirichlet Characters
27.8.7 $\chi\left(a\right)=1\text{ for all a\equiv 1 (mod d)},$ $\left(a,k\right)=1$.
##### 8: 1.1 Special Notation
In the physics, applied maths, and engineering literature a common alternative to $\overline{a}$ is $a^{*}$, $a$ being a complex number or a matrix; the Hermitian conjugate of $\mathbf{A}$ is usually being denoted $\mathbf{A}^{{\dagger}}$.
##### 9: 27.10 Periodic Number-Theoretic Functions
Examples are the Dirichlet characters (mod $k$) and the greatest common divisor $\left(n,k\right)$ regarded as a function of $n$. …
27.10.5 $c_{k}\left(n\right)=\sum_{d\mathbin{|}\left(n,k\right)}d\mu\left(\frac{k}{d}% \right).$
27.10.6 $s_{k}(n)=\sum_{d\mathbin{|}\left(n,k\right)}f(d)g\left(\frac{k}{d}\right)$
27.10.8 $a_{k}(m)=\sum_{d\mathbin{|}\left(m,k\right)}g(d)f\left(\frac{k}{d}\right)\frac% {d}{k}.$
##### 10: 10.1 Special Notation
A common alternative notation for $Y_{\nu}\left(z\right)$ is $N_{\nu}(z)$. …