About the Project

coaxial circles

AdvancedHelp

(0.002 seconds)

11—20 of 404 matching pages

11: 24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.3 ( 1 ) n E 2 n 2 2 n + 2 ( 2 n ) ! π 2 n + 1 ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
12: 10.64 Integral Representations
10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
13: 18.33 Polynomials Orthogonal on the Unit Circle
§18.33 Polynomials Orthogonal on the Unit Circle
§18.33(i) Definition
§18.33(ii) Recurrence Relations
§18.33(v) Biorthogonal Polynomials on the Unit Circle
Recurrence Relations
14: 4.4 Special Values and Limits
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.5 e ± π i = 1 ,
4.4.6 e ± π i / 2 = ± i ,
15: 24.7 Integral Representations
24.7.1 B 2 n = ( 1 ) n + 1 4 n 1 2 1 2 n 0 t 2 n 1 e 2 π t + 1 d t = ( 1 ) n + 1 2 n 1 2 1 2 n 0 t 2 n 1 e π t sech ( π t ) d t ,
24.7.2 B 2 n = ( 1 ) n + 1 4 n 0 t 2 n 1 e 2 π t 1 d t = ( 1 ) n + 1 2 n 0 t 2 n 1 e π t csch ( π t ) d t ,
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
24.7.6 E 2 n = ( 1 ) n 2 2 n + 1 0 t 2 n sech ( π t ) d t .
16: 6.9 Continued Fraction
6.9.1 E 1 ( z ) = e z z + 1 1 + 1 z + 2 1 + 2 z + 3 1 + 3 z + , | ph z | < π .
17: 7.7 Integral Representations
7.7.1 erfc z = 2 π e z 2 0 e z 2 t 2 t 2 + 1 d t , | ph z | 1 4 π ,
7.7.2 w ( z ) = 1 π i e t 2 d t t z = 2 z π i 0 e t 2 d t t 2 z 2 , z > 0 .
7.7.3 0 e a t 2 + 2 i z t d t = 1 2 π a e z 2 / a + i a F ( z a ) , a > 0 .
7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .
18: 17.18 Methods of Computation
Method (1) is applicable within the circles of convergence of the defining series, although it is often cumbersome owing to slowness of convergence and/or severe cancellation. …
19: 4.19 Maclaurin Series and Laurent Series
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
4.19.7 ln ( sin z z ) = n = 1 ( 1 ) n 2 2 n 1 B 2 n n ( 2 n ) ! z 2 n , | z | < π ,
20: 24.9 Inequalities
24.9.4 2 ( 2 n + 1 ) ! ( 2 π ) 2 n + 1 > ( 1 ) n + 1 B 2 n + 1 ( x ) > 0 , n = 2 , 3 , ,
24.9.5 4 ( 2 n 1 ) ! π 2 n 2 2 n 1 2 2 n 2 > ( 1 ) n E 2 n 1 ( x ) > 0 .
24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n
24.9.9 β = 2 + ln ( 1 6 π 2 ) ln 2 = 0.6491 .