About the Project

circular%20cases

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: 36.2 Catastrophes and Canonical Integrals
Special cases: K = 1 , fold catastrophe; K = 2 , cusp catastrophe; K = 3 , swallowtail catastrophe. …
§36.2(ii) Special Cases
Addendum: For further special cases see §36.2(iv)(rotation by ± 2 3 π in x , y plane). …
§36.2(iv) Addendum to 36.2(ii) Special Cases
2: 20.7 Identities
20.7.22 θ 2 ( 4 z | 4 τ ) = B θ 2 ( 1 8 π z | τ ) θ 2 ( 1 8 π + z | τ ) θ 2 ( 3 8 π z | τ ) θ 2 ( 3 8 π + z | τ ) ,
20.7.23 θ 3 ( 4 z | 4 τ ) = B θ 3 ( 1 8 π z | τ ) θ 3 ( 1 8 π + z | τ ) θ 3 ( 3 8 π z | τ ) θ 3 ( 3 8 π + z | τ ) ,
See Lawden (1989, pp. 19–20). … These are specific examples of modular transformations as discussed in §23.15; the corresponding results for the general case are given by Rademacher (1973, pp. 181–183). …
20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
3: 19.36 Methods of Computation
The computation is slowest for complete cases. … Complete cases of Legendre’s integrals and symmetric integrals can be computed with quadratic convergence by the AGM method (including Bartky transformations), using the equations in §19.8(i) and §19.22(ii), respectively. … The step from n to n + 1 is an ascending Landen transformation if θ = 1 (leading ultimately to a hyperbolic case of R C ) or a descending Gauss transformation if θ = 1 (leading to a circular case of R C ). … Also, see Todd (1975) for a special case of K ( k ) . For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
4: 7.8 Inequalities
7.8.2 1 x + x 2 + 2 < 𝖬 ( x ) 1 x + x 2 + ( 4 / π ) , x 0 ,
7.8.3 π 2 π x + 2 𝖬 ( x ) < 1 x + 1 , x 0 ,
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
5: 25.12 Polylogarithms
When z = e i θ , 0 θ 2 π , (25.12.1) becomes … The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … valid when s > 0 and | ph ( 1 z ) | < π , or s > 1 and z = 1 . (In the latter case (25.12.11) becomes (25.5.1)). … When s = 2 and e 2 π i a = z , (25.12.13) becomes (25.12.4). …
6: 36.4 Bifurcation Sets
Special Cases
x = 9 20 z 2 .
x = 3 20 z 2 ,
y = 1 3 z 2 ( sin ( 2 ϕ ) 2 sin ϕ ) , 0 ϕ 2 π .
36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
7: 20.11 Generalizations and Analogs
20.11.2 1 n G ( m , n ) = 1 n k = 0 n 1 e π i k 2 m / n = e π i / 4 m j = 0 m 1 e π i j 2 n / m = e π i / 4 m G ( n , m ) .
With the substitutions a = q e 2 i z , b = q e 2 i z , with q = e i π τ , we have … In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … However, in this case q is no longer regarded as an independent complex variable within the unit circle, because k is related to the variable τ = τ ( k ) of the theta functions via (20.9.2). … For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). …
8: 12.11 Zeros
Lastly, when a = n 1 2 , n = 1 , 2 , (Hermite polynomial case) U ( a , x ) has n zeros and they lie in the interval [ 2 a , 2 a ] . For further information on these cases see Dean (1966). … When a > 1 2 , U ( a , z ) has a string of complex zeros that approaches the ray ph z = 3 4 π as z , and a conjugate string. … Numerical calculations in this case show that z 1 2 , s corresponds to the s th zero on the string; compare §7.13(ii). …
12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
9: 5.11 Asymptotic Expansions
As z in the sector | ph z | π δ , … Wrench (1968) gives exact values of g k up to g 20 . … In the case K = 1 the factor 1 + ζ ( K ) is replaced with 4. For this result and a similar bound for the sector 1 2 π ph z π see Boyd (1994). … For the error term in (5.11.19) in the case z = x ( > 0 ) and c = 1 , see Olver (1995). …
10: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • H. R. McFarland and D. St. P. Richards (2001) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case. J. Multivariate Anal. 77 (1), pp. 21–53.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.