About the Project

change of

AdvancedHelp

(0.002 seconds)

11—20 of 120 matching pages

11: 27.12 Asymptotic Formulas: Primes
27.12.1 lim n p n n ln n = 1 ,
27.12.2 p n > n ln n , n = 1 , 2 , .
27.12.4 π ( x ) k = 1 ( k 1 ) ! x ( ln x ) k .
π ( x ) li ( x ) changes sign infinitely often as x ; see Littlewood (1914), Bays and Hudson (2000). …
27.12.7 | π ( x ) li ( x ) | < 1 8 π x ln x .
12: 27.11 Asymptotic Formulas: Partial Sums
27.11.2 n x d ( n ) = x ln x + ( 2 γ 1 ) x + O ( x ) ,
27.11.3 n x d ( n ) n = 1 2 ( ln x ) 2 + 2 γ ln x + O ( 1 ) ,
27.11.6 n x ϕ ( n ) = 3 π 2 x 2 + O ( x ln x ) .
27.11.7 n x ϕ ( n ) n = 6 π 2 x + O ( ln x ) .
27.11.8 p x 1 p = ln ln x + A + O ( 1 ln x ) ,
13: 1.13 Differential Equations
§1.13(iv) Change of Variables
Transformation of the Point at Infinity
Elimination of First Derivative by Change of Dependent Variable
Elimination of First Derivative by Change of Independent Variable
Liouville Transformation
14: 4.33 Maclaurin Series and Laurent Series
For expansions that correspond to (4.19.4)–(4.19.9), change z to i z and use (4.28.8)–(4.28.13).
15: 25.10 Zeros
Because | Z ( t ) | = | ζ ( 1 2 + i t ) | , Z ( t ) vanishes at the zeros of ζ ( 1 2 + i t ) , which can be separated by observing sign changes of Z ( t ) . Because Z ( t ) changes sign infinitely often, ζ ( 1 2 + i t ) has infinitely many zeros with t real. … By comparing N ( T ) with the number of sign changes of Z ( t ) we can decide whether ζ ( s ) has any zeros off the line in this region. Sign changes of Z ( t ) are determined by multiplying (25.9.3) by exp ( i ϑ ( t ) ) to obtain the Riemann–Siegel formula: …
16: 22.9 Cyclic Identities
22.9.7 κ = dn ( 2 K ( k ) / 3 , k ) ,
22.9.8 s 1 , 3 ( 4 ) s 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) s 3 , 3 ( 4 ) + s 3 , 3 ( 4 ) s 1 , 3 ( 4 ) = κ 2 1 k 2 ,
22.9.13 s 1 , 3 ( 4 ) s 2 , 3 ( 4 ) s 3 , 3 ( 4 ) = 1 1 κ 2 ( s 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) + s 3 , 3 ( 4 ) ) ,
22.9.14 c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) = κ 2 1 κ 2 ( c 1 , 3 ( 4 ) + c 2 , 3 ( 4 ) + c 3 , 3 ( 4 ) ) ,
22.9.15 d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) = κ 2 + k 2 1 1 κ 2 ( d 1 , 3 ( 2 ) + d 2 , 3 ( 2 ) + d 3 , 3 ( 2 ) ) ,
17: 9.7 Asymptotic Expansions
9.7.1 ζ = 2 3 z 3 / 2 .
9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
9.7.20 R n ( z ) = ( 1 ) n k = 0 m 1 ( 1 ) k u k G n k ( 2 ζ ) ζ k + R m , n ( z ) ,
9.7.21 S n ( z ) = ( 1 ) n 1 k = 0 m 1 ( 1 ) k v k G n k ( 2 ζ ) ζ k + S m , n ( z ) ,
18: 22.2 Definitions
With
22.2.4 sn ( z , k ) = θ 3 ( 0 , q ) θ 2 ( 0 , q ) θ 1 ( ζ , q ) θ 4 ( ζ , q ) = 1 ns ( z , k ) ,
22.2.5 cn ( z , k ) = θ 4 ( 0 , q ) θ 2 ( 0 , q ) θ 2 ( ζ , q ) θ 4 ( ζ , q ) = 1 nc ( z , k ) ,
22.2.6 dn ( z , k ) = θ 4 ( 0 , q ) θ 3 ( 0 , q ) θ 3 ( ζ , q ) θ 4 ( ζ , q ) = 1 nd ( z , k ) ,
19: 34.1 Special Notation
34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( 1 ) j 1 j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ;
20: 7.5 Interrelations
7.5.7 ζ = 1 2 π ( 1 i ) z ,
7.5.8 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) erf ζ .
7.5.9 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) ( 1 e ± 1 2 π i z 2 w ( i ζ ) ) .
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .