About the Project

cash app customer service number +1(888‒481‒4477)

AdvancedHelp

(0.015 seconds)

11—20 of 71 matching pages

11: 26.11 Integer Partitions: Compositions
For example, there are eight compositions of 4: 4 , 3 + 1 , 1 + 3 , 2 + 2 , 2 + 1 + 1 , 1 + 2 + 1 , 1 + 1 + 2 , and 1 + 1 + 1 + 1 . c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . … The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
12: 26.5 Lattice Paths: Catalan Numbers
26.5.1 C ( n ) = 1 n + 1 ( 2 n n ) = 1 2 n + 1 ( 2 n + 1 n ) = ( 2 n n ) ( 2 n n 1 ) = ( 2 n 1 n ) ( 2 n 1 n + 1 ) .
26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
13: Ronald F. Boisvert
His research interests include numerical solution of partial differential equations, mathematical software, and information services that support computational science. … Department of Commerce Gold Medal for Distinguished Achievement in the Federal Service in 2011, and an Outstanding Alumni Award from the Purdue University Department of Computer Science in 2012. …
14: 27.18 Methods of Computation: Primes
These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
15: 24.15 Related Sequences of Numbers
24.15.6 B n = k = 0 n ( 1 ) k k ! S ( n , k ) k + 1 ,
24.15.7 B n = k = 0 n ( 1 ) k ( n + 1 k + 1 ) S ( n + k , k ) / ( n + k k ) ,
24.15.8 k = 0 n ( 1 ) n + k s ( n + 1 , k + 1 ) B k = n ! n + 1 .
24.15.9 p B n n S ( p 1 + n , p 1 ) ( mod p 2 ) , 1 n p 2 ,
The Fibonacci numbers are defined by u 0 = 0 , u 1 = 1 , and u n + 1 = u n + u n 1 , n 1 . …
16: 26.6 Other Lattice Path Numbers
26.6.2 M ( n ) = k = 0 n ( 1 ) k n + 2 k ( n k ) ( 2 n + 2 2 k n + 1 k ) .
26.6.4 r ( n ) = D ( n , n ) D ( n + 1 , n 1 ) , n 1 .
26.6.10 D ( m , n ) = D ( m , n 1 ) + D ( m 1 , n ) + D ( m 1 , n 1 ) , m , n 1 ,
26.6.11 M ( n ) = M ( n 1 ) + k = 2 n M ( k 2 ) M ( n k ) , n 2 .
26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
17: 24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
18: 3.11 Approximation Techniques
3.11.28 S = j = 1 J ( f ( x j ) p n ( x j ) ) 2 .
Here x j , j = 1 , 2 , , J , is a given set of distinct real points and J n + 1 . …
3.11.32 j = 1 J w ( x j ) ( f ( x j ) Φ n ( x j ) ) 2 ,
3.11.34 X k = j = 1 J w ( x j ) ϕ k ( x j ) ϕ ( x j ) ,
3.11.35 F k = j = 1 J w ( x j ) f ( x j ) ϕ k ( x j ) .
19: 24.9 Inequalities
24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n
24.9.10 4 n + 1 ( 2 n ) ! π 2 n + 1 > ( 1 ) n E 2 n > 4 n + 1 ( 2 n ) ! π 2 n + 1 1 1 + 3 1 2 n .
20: 26.7 Set Partitions: Bell Numbers
26.7.6 B ( n + 1 ) = k = 0 n ( n k ) B ( k ) .