About the Project

cardinal%20monosplines

AdvancedHelp

(0.002 seconds)

1—10 of 106 matching pages

1: 24.17 Mathematical Applications
The functions …
Bernoulli Monosplines
For each n = 1 , 2 , the function M n ( x ) is also the unique cardinal monospline of degree n satisfying (24.17.6), provided that … is the unique cardinal monospline of degree n having the least supremum norm F on (minimality property). …
2: 26.18 Counting Techniques
26.18.1 | S ( A 1 A 2 A n ) | = | S | + t = 1 n ( 1 ) t 1 j 1 < j 2 < < j t n | A j 1 A j 2 A j t | .
3: 26.1 Special Notation
x real variable.
| A | number of elements of a finite set A .
4: 20 Theta Functions
Chapter 20 Theta Functions
5: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • I. J. Schoenberg (1973) Cardinal Spline Interpolation. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 6: 3.3 Interpolation
    For interpolation of a bounded function f on the cardinal function of f is defined by
    3.3.43 C ( f , h ) ( x ) = k = f ( k h ) S ( k , h ) ( x ) ,
    7: 8 Incomplete Gamma and Related
    Functions
    8: 28 Mathieu Functions and Hill’s Equation
    9: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 10: 23 Weierstrass Elliptic and Modular
    Functions