About the Project
NIST

cardinal

AdvancedHelp

(0.001 seconds)

5 matching pages

1: 26.18 Counting Techniques
26.18.1 | S ( A 1 A 2 A n ) | = | S | + t = 1 n ( - 1 ) t 1 j 1 < j 2 < < j t n | A j 1 A j 2 A j t | .
2: 24.17 Mathematical Applications
The members of 𝒮 n are called cardinal spline functions. The functions …
Bernoulli Monosplines
For each n = 1 , 2 , the function M n ( x ) is also the unique cardinal monospline of degree n satisfying (24.17.6), provided that …
3: 26.1 Special Notation
x

real variable.

| A |

number of elements of a finite set A .

4: 3.3 Interpolation
For interpolation of a bounded function f on the cardinal function of f is defined by
3.3.43 C ( f , h ) ( x ) = k = - f ( k h ) S ( k , h ) ( x ) ,
5: Bibliography S
  • I. J. Schoenberg (1973) Cardinal Spline Interpolation. Society for Industrial and Applied Mathematics, Philadelphia, PA.