About the Project
NIST

by reflection

AdvancedHelp

(0.002 seconds)

1—10 of 35 matching pages

1: 25.4 Reflection Formulas
§25.4 Reflection Formulas
25.4.1 ζ ( 1 - s ) = 2 ( 2 π ) - s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
25.4.2 ζ ( s ) = 2 ( 2 π ) s - 1 sin ( 1 2 π s ) Γ ( 1 - s ) ζ ( 1 - s ) .
25.4.3 ξ ( s ) = ξ ( 1 - s ) ,
2: 5.21 Methods of Computation
For the left half-plane we can continue the backward recurrence or make use of the reflection formula (5.5.3). …
3: Preface
The term digital library has gained acceptance for this kind of information resource, and our choice of project title reflects our hope that the NIST DLMF will be a vehicle for revolutionizing the way applicable mathematics in general is practiced and delivered.
4: 5.5 Functional Relations
§5.5(ii) Reflection
5.5.3 Γ ( z ) Γ ( 1 - z ) = π / sin ( π z ) , z 0 , ± 1 , ,
5: 28.12 Definitions and Basic Properties
28.12.2 λ ν ( - q ) = λ ν ( q ) = λ - ν ( q ) .
28.12.10 me ν ( z , q ) ¯ = me ν ¯ ( - z ¯ , q ¯ ) .
28.12.15 se ν ( z , q ) = - se ν ( - z , q ) = - se - ν ( z , q ) .
6: 36.14 Other Physical Applications
Applications include the reflection of ultrasound pulses, and acoustical waveguides. …
7: 10.61 Definitions and Basic Properties
§10.61(iii) Reflection Formulas for Arguments
§10.61(iv) Reflection Formulas for Orders
8: 34.1 Special Notation
34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( - 1 ) j 1 - j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 - m 3 ) ;
9: 4.37 Inverse Hyperbolic Functions
§4.37(iii) Reflection Formulas
10: 12.2 Differential Equations
§12.2(iv) Reflection Formulas