# by reflection

(0.001 seconds)

## 1—10 of 37 matching pages

##### 1: 25.4 Reflection Formulas
###### §25.4 Reflection Formulas
25.4.3 $\xi\left(s\right)=\xi\left(1-s\right),$
##### 2: 5.21 Methods of Computation
For the left half-plane we can continue the backward recurrence or make use of the reflection formula (5.5.3). …
##### 3: Preface
The term digital library has gained acceptance for this kind of information resource, and our choice of project title reflects our hope that the NIST DLMF will be a vehicle for revolutionizing the way applicable mathematics in general is practiced and delivered.
##### 4: 5.5 Functional Relations
###### §5.5(ii) Reflection
5.5.3 $\Gamma\left(z\right)\Gamma\left(1-z\right)=\pi/\sin\left(\pi z\right),$ $z\neq 0,\pm 1,\dots$,
##### 5: 28.12 Definitions and Basic Properties
28.12.2 $\lambda_{\nu}\left(-q\right)=\lambda_{\nu}\left(q\right)=\lambda_{-\nu}\left(q% \right).$
28.12.15 $\operatorname{se}_{\nu}\left(z,q\right)=-\operatorname{se}_{\nu}\left(-z,q% \right)=-\operatorname{se}_{-\nu}\left(z,q\right).$
##### 6: 36.14 Other Physical Applications
Applications include the reflection of ultrasound pulses, and acoustical waveguides. …
##### 8: 34.1 Special Notation
34.1.1 $\left(j_{1}\;m_{1}\;j_{2}\;m_{2}|j_{1}\;j_{2}\;j_{3}\,\,m_{3}\right)=(-1)^{j_{% 1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\begin{pmatrix}j_{1}&j_{2}&j_{3}\\ m_{1}&m_{2}&-m_{3}\end{pmatrix};$