About the Project

branch%20point

AdvancedHelp

(0.002 seconds)

3 matching pages

1: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). In the complex plane Li 2 ( z ) has a branch point at z = 1 . The principal branch has a cut along the interval [ 1 , ) and agrees with (25.12.1) when | z | 1 ; see also §4.2(i). The remainder of the equations in this subsection apply to principal branches. …
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
2: 12.11 Zeros
12.11.2 τ s = ( 2 s + 1 2 a ) π + i ln ( π 1 2 2 a 1 2 Γ ( 1 2 + a ) ) ,
12.11.3 λ s = ln τ s 1 2 π i .
For example, let the s th real zeros of U ( a , x ) and U ( a , x ) , counted in descending order away from the point z = 2 a , be denoted by u a , s and u a , s , respectively. …
12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
3: 18.39 Applications in the Physical Sciences
While non-normalizable continuum, or scattering, states are mentioned, with appropriate references in what follows, focus is on the L 2 eigenfunctions corresponding to the point, or discrete, spectrum, and representing bound rather than scattering states, these former being expressed in terms of OP’s or EOP’s. … Below we consider two potentials with analytically known eigenfunctions and eigenvalues where the spectrum is entirely point, or discrete, with all eigenfunctions being L 2 and forming a complete set. … An important, and perhaps unexpected, feature of the EOP’s is now pointed out by noting that for 1D Schrödinger operators, or equivalent Sturm-Liouville ODEs, having discrete spectra with L 2 eigenfunctions vanishing at the end points, in this case ± see Simon (2005c, Theorem 3.3, p. 35), such eigenfunctions satisfy the Sturm oscillation theorem. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … For many applications the natural weight functions are non-classical, and thus the OP’s and the determination of the Gaussian quadrature points and weights represent a computational challenge. …