About the Project

branch%20conventions

AdvancedHelp

(0.002 seconds)

1—10 of 294 matching pages

1: 10.2 Definitions
§10.2(ii) Standard Solutions
The principal branch corresponds to the principal branches of J ± ν ( z ) in (10.2.3) and (10.2.4), with a cut in the z -plane along the interval ( , 0 ] . … Each solution has a branch point at z = 0 for all ν . …
Branch Conventions
2: 4.12 Generalized Logarithms and Exponentials
4.12.6 ϕ ( x ) = ln ( x + 1 ) , 1 < x < 0 ,
4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
4.12.10 0 ln ln times x < 1 .
3: 10.25 Definitions
§10.25(ii) Standard Solutions
It has a branch point at z = 0 for all ν . The principal branch corresponds to the principal value of the square root in (10.25.3), is analytic in ( , 0 ] , and two-valued and discontinuous on the cut ph z = ± π . … For fixed z ( 0 ) each branch of I ν ( z ) and K ν ( z ) is entire in ν .
Branch Conventions
4: 4.2 Definitions
This is a multivalued function of z with branch point at z = 0 . The principal value, or principal branch, is defined by … Most texts extend the definition of the principal value to include the branch cutIn all other cases, z a is a multivalued function with branch point at z = 0 . … With this convention, …
5: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). In the complex plane Li 2 ( z ) has a branch point at z = 1 . The principal branch has a cut along the interval [ 1 , ) and agrees with (25.12.1) when | z | 1 ; see also §4.2(i). The remainder of the equations in this subsection apply to principal branches. …
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
6: 20 Theta Functions
Chapter 20 Theta Functions
7: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
27.2.3 π ( x ) x ln x .
27.2.4 p n n ln n .
27.2.14 Λ ( n ) = ln p , n = p a ,
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
8: Mathematical Introduction
These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). … For example, for the hypergeometric function we often use the notation 𝐅 ( a , b ; c ; z ) 15.2(i)) in place of the more conventional F 1 2 ( a , b ; c ; z ) or F ( a , b ; c ; z ) . … Special functions with one real variable are depicted graphically with conventional two-dimensional (2D) line graphs. … Another numerical convention is that decimals followed by dots are unrounded; without the dots they are rounded. …
9: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Kerimov and Skorokhodov (1985a) tabulates 5 (nonreal) complex conjugate pairs of zeros of the principal branches of Y n ( z ) and Y n ( z ) for n = 0 ( 1 ) 5 , 8D.

  • Kerimov and Skorokhodov (1985b) tabulates 50 zeros of the principal branches of H 0 ( 1 ) ( z ) and H 1 ( 1 ) ( z ) , 8D.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • 10: 6.16 Mathematical Applications
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify