About the Project

bounded%20variation

AdvancedHelp

(0.002 seconds)

1—10 of 200 matching pages

1: 10.17 Asymptotic Expansions for Large Argument
§10.17(iii) Error Bounds for Real Argument and Order
§10.17(iv) Error Bounds for Complex Argument and Order
Bounds for 𝒱 z , i ( t ) are given by … The bounds (10.17.15) also apply to 𝒱 z , i ( t ) in the conjugate sectors. Corresponding error bounds for (10.17.3) and (10.17.4) are obtainable by combining (10.17.13) and (10.17.14) with (10.4.4). …
2: 10.40 Asymptotic Expansions for Large Argument
§10.40(ii) Error Bounds for Real Argument and Order
§10.40(iii) Error Bounds for Complex Argument and Order
where 𝒱 denotes the variational operator (§2.3(i)), and the paths of variation are subject to the condition that | t | changes monotonically. Bounds for 𝒱 z , ( t ) are given by … If z with | 2 | z | | bounded and m ( 0 ) fixed, then …
3: Bibliography Y
  • K. Yang and M. de Llano (1989) Simple Variational Proof That Any Two-Dimensional Potential Well Supports at Least One Bound State. American Journal of Physics 57 (1), pp. 85–86.
  • 4: 1.4 Calculus of One Variable
    Functions of Bounded Variation
    If 𝒱 a , b ( f ) < , then f ( x ) is of bounded variation on ( a , b ) . In this case, g ( x ) = 𝒱 a , x ( f ) and h ( x ) = 𝒱 a , x ( f ) f ( x ) are nondecreasing bounded functions and f ( x ) = g ( x ) h ( x ) . … For further information on total variation see Olver (1997b, pp. 27–29). …
    5: Bibliography N
  • G. Nemes (2017a) Error bounds for the asymptotic expansion of the Hurwitz zeta function. Proc. A. 473 (2203), pp. 20170363, 16.
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • E. Neuman (2003) Bounds for symmetric elliptic integrals. J. Approx. Theory 122 (2), pp. 249–259.
  • E. Neuman (2013) Inequalities and bounds for the incomplete gamma function. Results Math. 63 (3-4), pp. 1209–1214.
  • 6: Bibliography P
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • T. G. Pedersen (2003) Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67 (7), pp. (073401–1)–(073401–4).
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 7: Bibliography S
  • F. W. Schäfke and A. Finsterer (1990) On Lindelöf’s error bound for Stirling’s series. J. Reine Angew. Math. 404, pp. 135–139.
  • C. Schwartz (1961) Variational calculations of scattering. Ann. Phys. 16, pp. 36–50.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • B. Simon (1976) The Bound State of Weakly Coupled Schrödinger Operators in One and Two Dimensions. Annals of Physics 97 (2), pp. 279–288.
  • 8: Bibliography M
  • J. P. Mills (1926) Table of the ratio: Area to bounding ordinate, for any portion of normal curve. Biometrika 18, pp. 395–400.
  • C. Mortici (2011b) New sharp bounds for gamma and digamma functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 57 (1), pp. 57–60.
  • C. Mortici (2013b) Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Modelling 57 (5-6), pp. 1360–1363.
  • R. J. Muirhead (1978) Latent roots and matrix variates: A review of some asymptotic results. Ann. Statist. 6 (1), pp. 5–33.
  • M. E. Muldoon (1981) The variation with respect to order of zeros of Bessel functions. Rend. Sem. Mat. Univ. Politec. Torino 39 (2), pp. 15–25.
  • 9: 18.39 Applications in the Physical Sciences
    The non-relativistic Schrödinger equation describing a single, bound (negative energy) electron, in an L 2 eigenstate of energy E is: … These, taken together with the infinite sets of bound states for each l , form complete sets. … While s in the basis of (18.39.44) is simply a variational parameter, care must be taken, or the relationship between the results of the matrix variational approximation and the Pollaczek polynomials is lost, although this has no effect on the use of the variational approximations Reinhardt (2021a, b). … which is Bohr’s quantization for the Coulomb bound state energies (18.39.31). … For applications and an extension of the Szegő–Szász inequality (18.14.20) for Legendre polynomials ( α = β = 0 ) to obtain global bounds on the variation of the phase of an elastic scattering amplitude, see Cornille and Martin (1972, 1974). …
    10: Bibliography O
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1967b) Bounds for the solutions of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B (4), pp. 161–166.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.