About the Project
NIST

binomial coefficients

AdvancedHelp

(0.001 seconds)

1—10 of 65 matching pages

1: 26.3 Lattice Paths: Binomial Coefficients
§26.3 Lattice Paths: Binomial Coefficients
Table 26.3.1: Binomial coefficients ( m n ) .
m n
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
m n
§26.3(iv) Identities
2: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. … Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
3: 24.6 Explicit Formulas
24.6.1 B 2 n = k = 2 2 n + 1 ( - 1 ) k - 1 k ( 2 n + 1 k ) j = 1 k - 1 j 2 n ,
24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( - 1 ) j j n ( n + 1 k - j ) / ( n k ) ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( - 1 ) j ( k j ) j n ,
24.6.10 E n = 1 2 n k = 1 n + 1 ( n + 1 k ) j = 0 k - 1 ( - 1 ) j ( 2 j + 1 ) n .
24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( - 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
4: 24.5 Recurrence Relations
24.5.1 k = 0 n - 1 ( n k ) B k ( x ) = n x n - 1 , n = 2 , 3 , ,
24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
24.5.3 k = 0 n - 1 ( n k ) B k = 0 , n = 2 , 3 , ,
24.5.4 k = 0 n ( 2 n 2 k ) E 2 k = 0 , n = 1 , 2 , ,
24.5.5 k = 0 n ( n k ) 2 k E n - k + E n = 2 .
5: 1.2 Elementary Algebra
§1.2(i) Binomial Coefficients
See also §26.3(i). … For complex z the binomial coefficient ( z k ) is defined via (1.2.6). …
1.2.3 ( n 0 ) + ( n 1 ) + + ( n n ) = 2 n .
1.2.4 ( n 0 ) - ( n 1 ) + + ( - 1 ) n ( n n ) = 0 .
6: 24.14 Sums
24.14.1 k = 0 n ( n k ) B k ( x ) B n - k ( y ) = n ( x + y - 1 ) B n - 1 ( x + y ) - ( n - 1 ) B n ( x + y ) ,
24.14.2 k = 0 n ( n k ) B k B n - k = ( 1 - n ) B n - n B n - 1 .
24.14.3 k = 0 n ( n k ) E k ( h ) E n - k ( x ) = 2 ( E n + 1 ( x + h ) - ( x + h - 1 ) E n ( x + h ) ) ,
24.14.5 k = 0 n ( n k ) E k ( h ) B n - k ( x ) = 2 n B n ( 1 2 ( x + h ) ) ,
24.14.6 k = 0 n ( n k ) 2 k B k E n - k = 2 ( 1 - 2 n - 1 ) B n - n E n - 1 .
7: 17.2 Calculus
§17.2(ii) Binomial Coefficients
17.2.27 [ n m ] q = ( q ; q ) n ( q ; q ) m ( q ; q ) n - m = ( q - n ; q ) m ( - 1 ) m q n m - ( m 2 ) ( q ; q ) m ,
17.2.30 [ - n m ] q = [ m + n - 1 m ] q ( - 1 ) m q - m n - ( m 2 ) ,
17.2.36 j = 0 n ( n j ) ( - z ) j = ( 1 - z ) n .
8: 17.3 q -Elementary and q -Special Functions
17.3.2 E q ( x ) = n = 0 ( 1 - q ) n q ( n 2 ) x n ( q ; q ) n = ( - ( 1 - q ) x ; q ) .
17.3.7 β n ( x , q ) = ( 1 - q ) 1 - n r = 0 n ( - 1 ) r ( n r ) r + 1 ( 1 - q r + 1 ) q r x .
17.3.8 A m , s ( q ) = q ( s - m 2 ) + ( s 2 ) j = 0 s ( - 1 ) j q ( j 2 ) [ m + 1 j ] q ( 1 - q s - j ) m ( 1 - q ) m .
17.3.9 a m , s ( q ) = q - ( s 2 ) ( 1 - q ) s ( q ; q ) s j = 0 s ( - 1 ) j q ( j 2 ) [ s j ] q ( 1 - q s - j ) m ( 1 - q ) m .
9: 12.13 Sums
12.13.2 U ( a , x + y ) = e - 1 2 x y - 1 4 y 2 m = 0 ( - a - 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a - 1 2 m ) y m V ( a - m , x ) ,
12.13.5 U ( a , x cos t + y sin t ) = e 1 4 ( x sin t - y cos t ) 2 m = 0 ( - a - 1 2 m ) ( tan t ) m U ( m + a , x ) U ( - m - 1 2 , y ) , a - 1 2 , 0 t 1 4 π .
10: 26.9 Integer Partitions: Restricted Number and Part Size
26.9.4 [ m n ] q = j = 1 n 1 - q m - n + j 1 - q j , n 0 ,
is the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). …
26.9.5 n = 0 p k ( n ) q n = j = 1 k 1 1 - q j = 1 + m = 1 [ k + m - 1 m ] q q m ,