# bilateral hypergeometric function

(0.001 seconds)

## 7 matching pages

##### 2: 17.1 Special Notation
###### §17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or $q$-hypergeometric) function ${{}_{r}\phi_{s}}\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)$, the bilateral basic hypergeometric (or bilateral $q$-hypergeometric) function ${{}_{r}\psi_{s}}\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)$, and the $q$-analogs of the Appell functions $\Phi^{(1)}\left(a;b,b^{\prime};c;q;x,y\right)$, $\Phi^{(2)}\left(a;b,b^{\prime};c,c^{\prime};q;x,y\right)$, $\Phi^{(3)}\left(a,a^{\prime};b,b^{\prime};c;q;x,y\right)$, and $\Phi^{(4)}\left(a,b;c,c^{\prime};q;x,y\right)$. …
##### 3: 17.8 Special Cases of ${{}_{r}\psi_{r}}$ Functions
###### Bailey’s Bilateral Summations
For similar formulas see Verma and Jain (1983).
##### 4: 17.4 Basic Hypergeometric Functions
###### §17.4(ii) ${{}_{r}\psi_{s}}$Functions
17.4.3 ${{}_{r}\psi_{s}}\left({a_{1},a_{2},\dots,a_{r}\atop b_{1},b_{2},\dots,b_{s}};q% ,z\right)={{}_{r}\psi_{s}}\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s% };q,z\right)=\sum_{n=-\infty}^{\infty}\frac{\left(a_{1},a_{2},\dots,a_{r};q% \right)_{n}(-1)^{(s-r)n}q^{(s-r)\genfrac{(}{)}{0.0pt}{}{n}{2}}z^{n}}{\left(b_{% 1},b_{2},\dots,b_{s};q\right)_{n}}=\sum_{n=0}^{\infty}\frac{\left(a_{1},a_{2},% \dots,a_{r};q\right)_{n}(-1)^{(s-r)n}q^{(s-r)\genfrac{(}{)}{0.0pt}{}{n}{2}}z^{% n}}{\left(b_{1},b_{2},\dots,b_{s};q\right)_{n}}+\sum_{n=1}^{\infty}\frac{\left% (q/b_{1},q/b_{2},\dots,q/b_{s};q\right)_{n}}{\left(q/a_{1},q/a_{2},\dots,q/a_{% r};q\right)_{n}}\left(\frac{b_{1}b_{2}\cdots b_{s}}{a_{1}a_{2}\cdots a_{r}z}% \right)^{n}.$
17.4.4 $\lim_{q\to 1-}{{}_{r}\psi_{r}}\left({q^{a_{1}},q^{a_{2}},\dots,q^{a_{r}}\atop q% ^{b_{1}},q^{b_{2}},\dots,q^{b_{r}}};q,z\right)={{}_{r}H_{r}}\left({a_{1},a_{2}% ,\dots,a_{r}\atop b_{1},b_{2},\dots,b_{r}};z\right).$
##### 5: 17.10 Transformations of ${{}_{r}\psi_{r}}$ Functions
###### §17.10 Transformations of ${{}_{r}\psi_{r}}$Functions
17.10.1 ${{}_{2}\psi_{2}}\left({a,b\atop c,d};q,z\right)=\frac{\left(az,d/a,c/b,dq/(abz% );q\right)_{\infty}}{\left(z,d,q/b,cd/(abz);q\right)_{\infty}}{{}_{2}\psi_{2}}% \left({a,abz/d\atop az,c};q,\frac{d}{a}\right),$
17.10.2 ${{}_{2}\psi_{2}}\left({a,b\atop c,d};q,z\right)=\frac{\left(az,bz,cq/(abz),dq/% (abz);q\right)_{\infty}}{\left(q/a,q/b,c,d;q\right)_{\infty}}{{}_{2}\psi_{2}}% \left({abz/c,abz/d\atop az,bz};q,\frac{cd}{abz}\right).$
17.10.3 ${{}_{8}\psi_{8}}\left({qa^{\frac{1}{2}},-qa^{\frac{1}{2}},c,d,e,f,aq^{-n},q^{-% n}\atop a^{\frac{1}{2}},-a^{\frac{1}{2}},aq/c,aq/d,aq/e,aq/f,q^{n+1},aq^{n+1}}% ;q,\frac{a^{2}q^{2n+2}}{cdef}\right)=\frac{\left(aq,q/a,aq/(cd),aq/(ef);q% \right)_{n}}{\left(q/c,q/d,aq/e,aq/f;q\right)_{n}}\*{{}_{4}\psi_{4}}\left({e,f% ,aq^{n+1}/(cd),q^{-n}\atop aq/c,aq/d,q^{n+1},ef/(aq^{n})};q,q\right),$
17.10.4 ${{}_{2}\psi_{2}}\left({e,f\atop aq/c,aq/d};q,\frac{aq}{ef}\right)=\frac{\left(% q/c,q/d,aq/e,aq/f;q\right)_{\infty}}{\left(aq,q/a,aq/(cd),aq/(ef);q\right)_{% \infty}}\*\sum_{n=-\infty}^{\infty}\frac{(1-aq^{2n})\left(c,d,e,f;q\right)_{n}% }{(1-a)\left(aq/c,aq/d,aq/e,aq/f;q\right)_{n}}\left(\frac{qa^{3}}{cdef}\right)% ^{n}q^{n^{2}}.$
##### 6: 16.4 Argument Unity
###### §16.4(v) Bilateral Series
Denote, formally, the bilateral hypergeometric function
16.4.16 ${{}_{p}H_{q}}\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right)=\sum_{k% =-\infty}^{\infty}\frac{{\left(a_{1}\right)_{k}}\dots{\left(a_{p}\right)_{k}}}% {{\left(b_{1}\right)_{k}}\dots{\left(b_{q}\right)_{k}}}z^{k}.$
16.4.17 ${{}_{2}H_{2}}\left({a,b\atop c,d};1\right)=\frac{\Gamma\left(c\right)\Gamma% \left(d\right)\Gamma\left(1-a\right)\Gamma\left(1-b\right)\Gamma\left(c+d-a-b-% 1\right)}{\Gamma\left(c-a\right)\Gamma\left(d-a\right)\Gamma\left(c-b\right)% \Gamma\left(d-b\right)},$ $\Re\left(c+d-a-b\right)>1$.