About the Project

backward

AdvancedHelp

(0.001 seconds)

11—20 of 21 matching pages

11: 3.10 Continued Fractions
Backward Recurrence Algorithm
( is the backward difference operator.) …
12: 18.20 Hahn Class: Explicit Representations
For comments on the use of the forward-difference operator Δ x , the backward-difference operator x , and the central-difference operator δ x , see §18.2(ii). …
18.20.1 p n ( x ) = 1 κ n w x x n ( w x = 0 n 1 F ( x + ) ) , x X .
13: Mathematical Introduction
complex plane (excluding infinity).
(or x ) backward difference operator: f ( x ) = f ( x ) f ( x 1 ) . (See also del operator in the Notations section.)
14: 6.20 Approximations
  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function (§13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 15: 15.19 Methods of Computation
    For example, in the half-plane z 1 2 we can use (15.12.2) or (15.12.3) to compute F ( a , b ; c + N + 1 ; z ) and F ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
    16: 18.19 Hahn Class: Definitions
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ( x ) where the role of d d x is played by Δ x or x or δ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • 17: 18.25 Wilson Class: Definitions
    For the Wilson class OP’s p n ( x ) with x = λ ( y ) : if the y -orthogonality set is { 0 , 1 , , N } , then the role of the differentiation operator d / d x in the Jacobi, Laguerre, and Hermite cases is played by the operator Δ y followed by division by Δ y ( λ ( y ) ) , or by the operator y followed by division by y ( λ ( y ) ) . …
    18: Bibliography O
  • F. W. J. Olver and D. J. Sookne (1972) Note on backward recurrence algorithms. Math. Comp. 26 (120), pp. 941–947.
  • 19: 18.26 Wilson Class: Continued
    For comments on the use of the forward-difference operator Δ x , the backward-difference operator x , and the central-difference operator δ x , see §18.2(ii). …
    20: 18.2 General Orthogonal Polynomials
    If the orthogonality discrete set X is { 0 , 1 , , N } or { 0 , 1 , 2 , } , then the role of the differentiation operator d / d x in the case of classical OP’s (§18.3) is played by Δ x , the forward-difference operator, or by x , the backward-difference operator; compare §18.1(i). …