About the Project

auxiliary functions for sine and cosine integrals

AdvancedHelp

(0.007 seconds)

11—20 of 22 matching pages

11: 6.18 Methods of Computation
§6.18(ii) Auxiliary Functions
12: 7.4 Symmetry
§7.4 Symmetry
C ( z ) = C ( z ) ,
S ( z ) = S ( z ) ,
C ( i z ) = i C ( z ) ,
g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
13: 7.5 Interrelations
7.5.3 C ( z ) = 1 2 + f ( z ) sin ( 1 2 π z 2 ) g ( z ) cos ( 1 2 π z 2 ) ,
7.5.4 S ( z ) = 1 2 f ( z ) cos ( 1 2 π z 2 ) g ( z ) sin ( 1 2 π z 2 ) .
7.5.6 e ± 1 2 π i z 2 ( g ( z ) ± i f ( z ) ) = 1 2 ( 1 ± i ) ( C ( z ) ± i S ( z ) ) .
14: 7.2 Definitions
7.2.10 f ( z ) = ( 1 2 S ( z ) ) cos ( 1 2 π z 2 ) ( 1 2 C ( z ) ) sin ( 1 2 π z 2 ) ,
7.2.11 g ( z ) = ( 1 2 C ( z ) ) cos ( 1 2 π z 2 ) + ( 1 2 S ( z ) ) sin ( 1 2 π z 2 ) .
15: 7.14 Integrals
§7.14 Integrals
Fourier Transform
Laplace Transforms
Laplace Transforms
In a series of ten papers Hadži (1968, 1969, 1970, 1972, 1973, 1975a, 1975b, 1976a, 1976b, 1978) gives many integrals containing error functions and Fresnel integrals, also in combination with the hypergeometric function, confluent hypergeometric functions, and generalized hypergeometric functions.
16: 7.24 Approximations
§7.24(i) Approximations in Terms of Elementary Functions
  • Hastings (1955) gives several minimax polynomial and rational approximations for erf x , erfc x and the auxiliary functions f ( x ) and g ( x ) .

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 17: 7.22 Methods of Computation
    §7.22(i) Main Functions
    The methods available for computing the main functions in this chapter are analogous to those described in §§6.18(i)6.18(iv) for the exponential integral and sine and cosine integrals, and similar comments apply. …
    §7.22(ii) Goodwin–Staton Integral
    §7.22(iii) Repeated Integrals of the Complementary Error Function
    The recursion scheme given by (7.18.1) and (7.18.7) can be used for computing i n erfc ( x ) . …
    18: 7.12 Asymptotic Expansions
    §7.12(i) Complementary Error Function
    §7.12(ii) Fresnel Integrals
    The asymptotic expansions of C ( z ) and S ( z ) are given by (7.5.3), (7.5.4), and …
    §7.12(iii) Goodwin–Staton Integral
    See Olver (1997b, p. 115) for an expansion of G ( z ) with bounds for the remainder for real and complex values of z .
    19: Bibliography S
  • D. V. Slavić (1974) Complements to asymptotic development of sine cosine integrals, and auxiliary functions. Univ. Beograd. Publ. Elecktrotehn. Fak., Ser. Mat. Fiz. 461–497, pp. 185–191.
  • 20: 1.14 Integral Transforms
    §1.14 Integral Transforms
    §1.14(ii) Fourier Cosine and Sine Transforms
    The Fourier cosine transform and Fourier sine transform are defined respectively by …
    Inversion
    §1.14(viii) Compendia