About the Project

asymptotic approximations for large parameters

AdvancedHelp

(0.008 seconds)

11—20 of 51 matching pages

11: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
β–ΊFor large values of the parameters in the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols, different asymptotic forms are obtained depending on which parameters are large. … β–ΊSemiclassical (WKBJ) approximations in terms of trigonometric or exponential functions are given in Varshalovich et al. (1988, §§8.9, 9.9, 10.7). Uniform approximations in terms of Airy functions for the 3 ⁒ j and 6 ⁒ j symbols are given in Schulten and Gordon (1975b). For approximations for the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
12: 25.11 Hurwitz Zeta Function
β–Ί
§25.11(xii) a -Asymptotic Behavior
β–ΊAs a in the sector | ph ⁑ a | Ο€ Ξ΄ ( < Ο€ ) , with s ( 1 ) and Ξ΄ fixed, we have the asymptotic expansion … β–ΊSimilarly, as a in the sector | ph ⁑ a | 1 2 ⁒ Ο€ Ξ΄ ( < 1 2 ⁒ Ο€ ) , β–Ί
25.11.44 ΢ ⁑ ( 1 , a ) 1 12 + 1 4 ⁒ a 2 ( 1 12 1 2 ⁒ a + 1 2 ⁒ a 2 ) ⁒ ln ⁑ a k = 1 B 2 ⁒ k + 2 ( 2 ⁒ k + 2 ) ⁒ ( 2 ⁒ k + 1 ) ⁒ 2 ⁒ k ⁒ a 2 ⁒ k ,
β–Ί
25.11.45 ΢ ⁑ ( 2 , a ) 1 12 ⁒ a + 1 9 ⁒ a 3 ( 1 6 ⁒ a 1 2 ⁒ a 2 + 1 3 ⁒ a 3 ) ⁒ ln ⁑ a k = 1 2 ⁒ B 2 ⁒ k + 2 ( 2 ⁒ k + 2 ) ⁒ ( 2 ⁒ k + 1 ) ⁒ 2 ⁒ k ⁒ ( 2 ⁒ k 1 ) ⁒ a ( 2 ⁒ k 1 ) .
13: 12.10 Uniform Asymptotic Expansions for Large Parameter
§12.10 Uniform Asymptotic Expansions for Large Parameter
β–Ί
§12.10(vi) Modifications of Expansions in Elementary Functions
β–Ίβ–Ί
Modified Expansions
β–Ί
14: 14.26 Uniform Asymptotic Expansions
§14.26 Uniform Asymptotic Expansions
β–ΊThe uniform asymptotic approximations given in §14.15 for P Ξ½ ΞΌ ⁑ ( x ) and 𝑸 Ξ½ ΞΌ ⁑ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). For an extension of §14.15(iv) to complex argument and imaginary parameters, see Dunster (1990b). β–ΊSee also Frenzen (1990), Gil et al. (2000), Shivakumar and Wong (1988), Ursell (1984), and Wong (1989) for uniform asymptotic approximations obtained from integral representations.
15: 12.11 Zeros
β–Ί
§12.11(ii) Asymptotic Expansions of Large Zeros
β–ΊWhen a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and … β–Ί
§12.11(iii) Asymptotic Expansions for Large Parameter
β–ΊFor large negative values of a the real zeros of U ⁑ ( a , x ) , U ⁑ ( a , x ) , V ⁑ ( a , x ) , and V ⁑ ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). … β–Ί
12.11.4 u a , s 2 1 2 ⁒ ΞΌ ⁒ ( p 0 ⁑ ( Ξ± ) + p 1 ⁑ ( Ξ± ) ΞΌ 4 + p 2 ⁑ ( Ξ± ) ΞΌ 8 + β‹― ) ,
16: 15.12 Asymptotic Approximations
§15.12 Asymptotic Approximations
β–Ί
§15.12(i) Large Variable
β–Ί
§15.12(ii) Large c
β–ΊAs Ξ» , … β–ΊFor other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
17: Bibliography O
β–Ί
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • β–Ί
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • β–Ί
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • β–Ί
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.
  • β–Ί
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 18: Bibliography T
    β–Ί
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • β–Ί
  • N. M. Temme (1987) On the computation of the incomplete gamma functions for large values of the parameters. In Algorithms for approximation (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser., Vol. 10, pp. 479–489.
  • β–Ί
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • β–Ί
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • β–Ί
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 19: 18.15 Asymptotic Approximations
    §18.15 Asymptotic Approximations
    β–Ί
    §18.15(i) Jacobi
    β–Ί
    §18.15(ii) Ultraspherical
    β–Ί
    §18.15(iii) Legendre
    β–Ί
    §18.15(iv) Laguerre
    20: 18.26 Wilson Class: Continued
    β–Ί
    §18.26(v) Asymptotic Approximations
    β–ΊFor asymptotic expansions of Wilson polynomials of large degree see Wilson (1991), and for asymptotic approximations to their largest zeros see Chen and Ismail (1998). β–ΊKoornwinder (2009) rescales and reparametrizes Racah polynomials and Wilson polynomials in such a way that they are continuous in their four parameters, provided that these parameters are nonnegative. Moreover, if one or more of the new parameters becomes zero, then the polynomial descends to a lower family in the Askey scheme.