About the Project

asymptotic%20forms%20for%20small%20q

AdvancedHelp

(0.006 seconds)

1—10 of 613 matching pages

1: 1.13 Differential Equations
§1.13(vii) Closed-Form Solutions
§1.13(viii) Eigenvalues and Eigenfunctions: Sturm-Liouville and Liouville forms
A standard form for second order ordinary differential equations with x , and with a real parameter λ , and real valued functions p ( x ) , q ( x ) , and ρ ( x ) , with p ( x ) and ρ ( x ) positive, is …Assuming that u ( x ) satisfies un-mixed boundary conditions of the form
Transformation to Liouville normal Form
2: Gergő Nemes
Nemes has research interests in asymptotic analysis, Écalle theory, exact WKB analysis, and special functions. As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
3: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations for the accessory parameter eigenvalues q m , see Fedoryuk (1991) and Slavyanov (1996). For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
4: 20 Theta Functions
Chapter 20 Theta Functions
5: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : … An equivalent form states that the n th prime p n (when the primes are listed in increasing order) is asymptotic to n ln n as n :
27.2.4 p n n ln n .
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
6: 28.16 Asymptotic Expansions for Large q
§28.16 Asymptotic Expansions for Large q
Then as h ( = q ) +
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
7: 17.1 Special Notation
§17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . Another function notation used is the “idem” function: … Fine (1988) uses F ( a , b ; t : q ) for a particular specialization of a ϕ 1 2 function.
8: 26.3 Lattice Paths: Binomial Coefficients
Table 26.3.1: Binomial coefficients ( m n ) .
m n
6 1 6 15 20 15 6 1
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
m n
3 1 4 10 20 35 56 84 120 165
26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
§26.3(v) Limiting Form
26.3.12 ( 2 n n ) 4 n π n , n .
9: 25.12 Polylogarithms
25.12.2 Li 2 ( z ) = 0 z t 1 ln ( 1 t ) d t , z ( 1 , ) .
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
G s ( x ) = Li s + 1 ( e x ) .
For a uniform asymptotic approximation for F s ( x ) see Temme and Olde Daalhuis (1990).
10: 26.5 Lattice Paths: Catalan Numbers
Table 26.5.1: Catalan numbers.
n C ( n ) n C ( n ) n C ( n )
6 132 13 7 42900 20 65641 20420
§26.5(iv) Limiting Forms