About the Project

asymptotic%20behavior%20for%20large%0Avariable

AdvancedHelp

(0.005 seconds)

21—30 of 765 matching pages

21: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 22: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • 23: 26.3 Lattice Paths: Binomial Coefficients
    ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    26.3.3 n = 0 m ( m n ) x n = ( 1 + x ) m , m = 0 , 1 , ,
    26.3.8 ( m n ) = k = 0 n ( m n 1 + k k ) , m n 0 .
    26.3.12 ( 2 n n ) 4 n π n , n .
    24: 25.11 Hurwitz Zeta Function
    Most references treat real a with 0 < a 1 . … Throughout this subsection a > 0 . …
    §25.11(xii) a -Asymptotic Behavior
    As a in the sector | ph a | π δ ( < π ) , with s ( 1 ) and δ fixed, we have the asymptotic expansion … Similarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
    25: 29.16 Asymptotic Expansions
    §29.16 Asymptotic Expansions
    Hargrave and Sleeman (1977) give asymptotic approximations for Lamé polynomials and their eigenvalues, including error bounds. The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. …
    26: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10(vi) Modifications of Expansions in Elementary Functions
    Modified Expansions
    27: 3.8 Nonlinear Equations
    for all n sufficiently large, where A and p are independent of n , then the sequence is said to have convergence of the p th order. … Initial approximations to the zeros can often be found from asymptotic or other approximations to f ( z ) , or by application of the phase principle or Rouché’s theorem; see §1.10(iv). … For moderate or large values of n it is not uncommon for the magnitude of the right-hand side of (3.8.14) to be very large compared with unity, signifying that the computation of zeros of polynomials is often an ill-posed problem. … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    28: 8 Incomplete Gamma and Related
    Functions
    29: 28 Mathieu Functions and Hill’s Equation
    30: 26.5 Lattice Paths: Catalan Numbers
    It counts the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x . …
    26.5.2 n = 0 C ( n ) x n = 1 1 4 x 2 x , | x | < 1 4 .
    26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
    26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .