About the Project

asymptotic solutions of difference equations

AdvancedHelp

(0.007 seconds)

1—10 of 36 matching pages

1: 2.9 Difference Equations
§2.9 Difference Equations
§2.9(ii) Coincident Characteristic Values
For error bounds see Zhang et al. (1996). …
§2.9(iii) Other Approximations
2: 16.25 Methods of Computation
Methods for computing the functions of the present chapter include power series, asymptotic expansions, integral representations, differential equations, and recurrence relations. …There is, however, an added feature in the numerical solution of differential equations and difference equations (recurrence relations). This occurs when the wanted solution is intermediate in asymptotic growth compared with other solutions. …
3: Bibliography Z
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • 4: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. …
    5: 3.6 Linear Difference Equations
    §3.6 Linear Difference Equations
    §3.6(ii) Homogeneous Equations
    §3.6(iv) Inhomogeneous Equations
    6: Bibliography K
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • 7: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • A. B. Olde Daalhuis (2004a) Inverse factorial-series solutions of difference equations. Proc. Edinb. Math. Soc. (2) 47 (2), pp. 421–448.
  • F. W. J. Olver (1967a) Numerical solution of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 111–129.
  • F. W. J. Olver (1967b) Bounds for the solutions of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B (4), pp. 161–166.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 8: Mathematical Introduction
    Two other ways in which this Handbook differs from AMS 55, and other handbooks, are as follows. … These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). In addition, there is a comprehensive account of the great variety of analytical methods that are used for deriving and applying the extremely important asymptotic properties of the special functions, including double asymptotic properties (Chapter 2 and §§10.41(iv), 10.41(v)). … For all equations and other technical information this Handbook and the DLMF either provide references to the literature for proof or describe steps that can be followed to construct a proof. … For equations or other technical information that appeared previously in AMS 55, the DLMF usually includes the corresponding AMS 55 equation number, or other form of reference, together with corrections, if needed. …
    9: 9.16 Physical Applications
    The frequent appearances of the Airy functions in both classical and quantum physics is associated with wave equations with turning points, for which asymptotic (WKBJ) solutions are exponential on one side and oscillatory on the other. …A quite different application is made in the study of the diffraction of sound pulses by a circular cylinder (Friedlander (1958)). … Again, the quest for asymptotic approximations that are uniformly valid solutions to this equation in the neighborhoods of critical points leads (after choosing solvable equations with similar asymptotic properties) to Airy functions. …An application of Airy functions to the solution of this equation is given in Gramtcheff (1981). … Solutions of the Schrödinger equation involving the Airy functions are given for other potentials in Vallée and Soares (2010). …
    10: Bibliography L
  • D. W. Lozier (1980) Numerical Solution of Linear Difference Equations. NBSIR Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
  • N. A. Lukaševič and A. I. Yablonskiĭ (1967) On a set of solutions of the sixth Painlevé equation. Differ. Uravn. 3 (3), pp. 520–523 (Russian).
  • N. A. Lukaševič (1965) Elementary solutions of certain Painlevé equations. Differ. Uravn. 1 (3), pp. 731–735 (Russian).
  • N. A. Lukaševič (1968) Solutions of the fifth Painlevé equation. Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).
  • N. A. Lukaševič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).