About the Project

asymptotic expansions for small parameters

AdvancedHelp

(0.006 seconds)

1—10 of 41 matching pages

1: 2.5 Mellin Transform Methods
§2.5(iii) Laplace Transforms with Small Parameters
For examples in which the integral defining the Mellin transform h ( z ) does not exist for any value of z , see Wong (1989, Chapter 3), Bleistein and Handelsman (1975, Chapter 4), and Handelsman and Lew (1970).
2: 12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
3: 8.20 Asymptotic Expansions of E p ( z )
4: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.9 J ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.10 Y ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
5: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
§10.19(i) Asymptotic Forms
§10.19(ii) Debye’s Expansions
§10.19(iii) Transition Region
See also §10.20(i).
6: 10.40 Asymptotic Expansions for Large Argument
10.40.5 I ν ( z ) e z ( 2 π z ) 1 2 k = 0 ( 1 ) k a k ( ν ) z k ± i e ± ν π i e z ( 2 π z ) 1 2 k = 0 a k ( ν ) z k , 1 2 π + δ ± ph z 3 2 π δ .
7: 8.11 Asymptotic Approximations and Expansions
8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
8: 11.6 Asymptotic Expansions
11.6.6 𝐊 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π δ ,
11.6.7 𝐌 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( i λ ) ν k , | ph ν | 1 2 π δ .
9: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
11.11.11 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 e ν μ k = 0 ( 1 2 ) k b k ( λ ) ν k , ν , | ph ν | π 2 δ ,
10: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.15 Q ( a , a ) 1 2 + 1 2 π a k = 0 c k ( 0 ) a k , | ph a | π δ ,
8.12.16 e ± π i a 2 i sin ( π a ) Q ( a , a e ± π i ) ± 1 2 i 2 π a k = 0 c k ( 0 ) ( a ) k , | ph a | π δ ,