About the Project

as z%E2%86%920

AdvancedHelp

(0.003 seconds)

11—20 of 734 matching pages

11: 10.36 Other Differential Equations
The quantity λ 2 in (10.13.1)–(10.13.6) and (10.13.8) can be replaced by λ 2 if at the same time the symbol 𝒞 in the given solutions is replaced by 𝒵 . …
10.36.1 z 2 ( z 2 + ν 2 ) w ′′ + z ( z 2 + 3 ν 2 ) w ( ( z 2 + ν 2 ) 2 + z 2 ν 2 ) w = 0 , w = 𝒵 ν ( z ) ,
10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
Differential equations for products can be obtained from (10.13.9)–(10.13.11) by replacing z by i z .
12: 28.8 Asymptotic Expansions for Large q
The approximations apply when the parameters a and q are real and large, and are uniform with respect to various regions in the z -plane. … They are uniform with respect to a when 2 q a ( 2 δ ) q , where δ is an arbitrary constant such that 0 < δ < 4 , and also with respect to z in the semi-infinite strip given by 0 z π and z 0 . The approximations are expressed in terms of Whittaker functions W κ , μ ( z ) and M κ , μ ( z ) with μ = 1 4 ; compare §2.8(vi). …With additional restrictions on z , uniform asymptotic approximations for solutions of (28.2.1) and (28.20.1) are also obtained in terms of elementary functions by re-expansions of the Whittaker functions; compare §2.8(ii). Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
13: 22.13 Derivatives and Differential Equations
22.13.1 ( d d z sn ( z , k ) ) 2 = ( 1 sn 2 ( z , k ) ) ( 1 k 2 sn 2 ( z , k ) ) ,
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.3 ( d d z dn ( z , k ) ) 2 = ( 1 dn 2 ( z , k ) ) ( dn 2 ( z , k ) k 2 ) .
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
22.13.10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) k 2 ) ( ns 2 ( z , k ) 1 ) ,
14: 7.4 Symmetry
7.4.1 erf ( z ) = erf ( z ) ,
7.4.2 erfc ( z ) = 2 erfc ( z ) ,
7.4.3 w ( z ) = 2 e z 2 w ( z ) .
7.4.4 F ( z ) = F ( z ) .
C ( z ) = C ( z ) ,
15: 22.10 Maclaurin Series
§22.10(i) Maclaurin Series in z
The full expansions converge when | z | < min ( K ( k ) , K ( k ) ) . …
22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
16: 4.20 Derivatives and Differential Equations
4.20.1 d d z sin z = cos z ,
4.20.2 d d z cos z = sin z ,
4.20.3 d d z tan z = sec 2 z ,
4.20.4 d d z csc z = csc z cot z ,
4.20.6 d d z cot z = csc 2 z ,
17: 4.33 Maclaurin Series and Laurent Series
4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
For expansions that correspond to (4.19.4)–(4.19.9), change z to i z and use (4.28.8)–(4.28.13).
18: 4.6 Power Series
4.6.1 ln ( 1 + z ) = z 1 2 z 2 + 1 3 z 3 , | z | 1 , z 1 ,
4.6.3 ln z = ( z 1 ) 1 2 ( z 1 ) 2 + 1 3 ( z 1 ) 3 , | z 1 | 1 , z 0 ,
4.6.4 ln z = 2 ( ( z 1 z + 1 ) + 1 3 ( z 1 z + 1 ) 3 + 1 5 ( z 1 z + 1 ) 5 + ) , z 0 , z 0 ,
valid when a is any real or complex constant and | z | < 1 . If a = 0 , 1 , 2 , , then the series terminates and z is unrestricted. …
19: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.9 sd ( 2 z , k ) = 2 sd ( z , k ) cd ( z , k ) nd ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.10 nd ( 2 z , k ) = nd 2 ( z , k ) + k 2 sd 2 ( z , k ) cd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
20: 4.21 Identities
4.21.24 sin ( z ) = sin z ,
4.21.25 cos ( z ) = cos z ,
This result is also valid when n is fractional or complex, provided that π z π . … If t = tan ( 1 2 z ) , then … With z = x + i y