About the Project

as%20functions%20of%20parameters

AdvancedHelp

(0.009 seconds)

1—10 of 38 matching pages

1: 20.10 Integrals
§20.10 Integrals
§20.10(i) Mellin Transforms with respect to the Lattice Parameter
Here ζ ( s ) again denotes the Riemann zeta function25.2). …
§20.10(ii) Laplace Transforms with respect to the Lattice Parameter
Then …
2: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
The Riemann zeta function is a special case: …
§25.11(xii) a -Asymptotic Behavior
Similarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
3: 20.7 Identities
§20.7(v) Watson’s Identities
§20.7(vi) Landen Transformations
§20.7(vii) Derivatives of Ratios of Theta Functions
See Lawden (1989, pp. 19–20). …
§20.7(viii) Transformations of Lattice Parameter
4: 15.10 Hypergeometric Differential Equation
Singularity z = 0
Singularity z = 1
Singularity z =
(c) If the parameter c in the differential equation equals 2 n = 0 , 1 , 2 , , then fundamental solutions in the neighborhood of z = 0 are given by z n 1 times those in (a) and (b), with a and b replaced throughout by a + n 1 and b + n 1 , respectively. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
5: Bibliography D
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1991) Conical functions with one or both parameters large. Proc. Roy. Soc. Edinburgh Sect. A 119 (3-4), pp. 311–327.
  • T. M. Dunster (1992) Uniform asymptotic expansions for oblate spheroidal functions I: Positive separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 121 (3-4), pp. 303–320.
  • 6: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • 7: 26.14 Permutations: Order Notation
    §26.14(ii) Generating Functions
    26.14.3 σ 𝔖 n q inv ( σ ) = σ 𝔖 n q maj ( σ ) = j = 1 n 1 q j 1 q .
    26.14.4 n , k = 0 n k x k t n n ! = 1 x exp ( ( x 1 ) t ) x , | x | < 1 , | t | < 1 .
    8: 36.4 Bifurcation Sets
    36.4.6 27 x 2 = 8 y 3 .
    x = 9 20 z 2 .
    x = 3 20 z 2 ,
    36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
    36.4.13 x = y = 1 4 z 2 .
    9: 36.2 Catastrophes and Canonical Integrals
    36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
    36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
    10: 33.3 Graphics
    §33.3 Graphics
    §33.3(i) Line Graphs of the Coulomb Radial Functions F ( η , ρ ) and G ( η , ρ )
    See accompanying text
    Figure 33.3.4: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 10 . The turning point is at ρ tp ( 10 , 0 ) = 20 . Magnify
    33.3.1 M ( η , ρ ) = ( F 2 ( η , ρ ) + G 2 ( η , ρ ) ) 1 / 2 = | H ± ( η , ρ ) | .
    §33.3(ii) Surfaces of the Coulomb Radial Functions F 0 ( η , ρ ) and G 0 ( η , ρ )