…
►
4.14.4
►
4.14.5
…
►The functions
and
are entire.
In
the zeros of
are
,
; the zeros of
are
,
.
The functions
,
,
, and
are meromorphic, and the locations of their zeros and poles follow from (
4.14.4) to (
4.14.7).
…
…
►Let
denote any of
,
,
, or
.
…
►
,
►
…
►Let
denote
,
, or
.
Then
…
…
►With
defined as in §
10.25(ii),
►
►
►
►
…
…
►The quantity
in (
10.13.1)–(
10.13.6) and (
10.13.8) can be replaced by
if at the same time the symbol
in the given solutions is replaced by
.
…
►
10.36.1
,
►
10.36.2
.
►Differential equations for products can be obtained from (
10.13.9)–(
10.13.11) by replacing
by
.
…
►
7.4.1
►
7.4.2
►
7.4.3
►
7.4.4
►
…
…
►
§22.10(i) Maclaurin Series in
…
►The full expansions converge when
.
…
►
22.10.4
►
22.10.5
…
►
22.10.8
…
…
►
4.33.1
►
4.33.2
►
4.33.3
.
…
►For expansions that correspond to (
4.19.4)–(
4.19.9), change
to
and use (
4.28.8)–(
4.28.13).
…
►
4.6.2
,
…
►
4.6.4
, ,
…
►
4.6.6
, , .
…
►valid when
is any real or complex constant and
.
If
, then the series terminates and
is unrestricted.
…