About the Project

as Bessel polynomials

AdvancedHelp

(0.005 seconds)

1—10 of 82 matching pages

1: 18.34 Bessel Polynomials
§18.34 Bessel Polynomials
§18.34(ii) Orthogonality
18.34.7 x 2 y n ′′ ( x ; a ) + ( a x + 2 ) y n ( x ; a ) n ( n + a 1 ) y n ( x ; a ) = 0 ,
For further information on Bessel polynomials see §10.49(ii).
2: 18.1 Notation
  • Bessel: y n ( x ; a ) .

  • 3: 18.39 Applications in the Physical Sciences
    The functions ϕ n are expressed in terms of Romanovski–Bessel polynomials, or Laguerre polynomials by (18.34.7_1). The finite system of functions ψ n is orthonormal in L 2 ( , d x ) , see (18.34.7_3). …
    4: Bibliography D
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a) On the zeros of generalized Bessel polynomials. I. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 1–13.
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981b) On the zeros of generalized Bessel polynomials. II. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 14–25.
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • 5: 10.49 Explicit Formulas
    10.49.8 𝗂 n ( 1 ) ( z ) = 1 2 e z k = 0 n ( 1 ) k a k ( n + 1 2 ) z k + 1 + ( 1 ) n + 1 1 2 e z k = 0 n a k ( n + 1 2 ) z k + 1 .
    10.49.10 𝗂 n ( 2 ) ( z ) = 1 2 e z k = 0 n ( 1 ) k a k ( n + 1 2 ) z k + 1 + ( 1 ) n 1 2 e z k = 0 n a k ( n + 1 2 ) z k + 1 .
    10.49.12 𝗄 n ( z ) = 1 2 π e z k = 0 n a k ( n + 1 2 ) z k + 1 .
    k = 0 n a k ( n + 1 2 ) z n k is sometimes called the Bessel polynomial of degree n . … …
    6: Bibliography E
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • W. D. Evans, W. N. Everitt, K. H. Kwon, and L. L. Littlejohn (1993) Real orthogonalizing weights for Bessel polynomials. J. Comput. Appl. Math. 49 (1-3), pp. 51–57.
  • 7: 10.23 Sums
    10.23.8 𝒞 ν ( w ) w ν = 2 ν Γ ( ν ) k = 0 ( ν + k ) 𝒞 ν + k ( u ) u ν J ν + k ( v ) v ν C k ( ν ) ( cos α ) , ν 0 , 1 , , | v e ± i α | < | u | ,
    10.23.9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) , ν 0 , 1 , .
    10.23.12 1 t z = J 0 ( z ) O 0 ( t ) + 2 k = 1 J k ( z ) O k ( t ) , | z | < | t | .
    8: 34 3j, 6j, 9j Symbols
    9: 18.3 Definitions
    Bessel polynomials
    Bessel polynomials are often included among the classical OP’s. …
    10: 18 Orthogonal Polynomials
    Chapter 18 Orthogonal Polynomials