as Bernoulli or Euler polynomials
(0.005 seconds)
1—10 of 148 matching pages
1: 24.1 Special Notation
…
►
Bernoulli Numbers and Polynomials
►The origin of the notation , , is not clear. … ►Euler Numbers and Polynomials
… ►The notations , , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …2: 24.18 Physical Applications
§24.18 Physical Applications
►Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). ►Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).3: 24.3 Graphs
4: 24.4 Basic Properties
…
►
§24.4(i) Difference Equations
… ►§24.4(ii) Symmetry
… ►§24.4(iii) Sums of Powers
… ►§24.4(iv) Finite Expansions
… ►§24.4(vi) Special Values
…5: 24.16 Generalizations
§24.16 Generalizations
… ►For , Bernoulli and Euler polynomials of order are defined respectively by …When they reduce to the Bernoulli and Euler numbers of order : … ►§24.16(iii) Other Generalizations
►In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).6: 24.13 Integrals
…
►
§24.13(i) Bernoulli Polynomials
… ►
24.13.3
…
►
§24.13(ii) Euler Polynomials
… ►
24.13.8
…
►
§24.13(iii) Compendia
…7: 24.21 Software
…
►
§24.21(ii) , , , and
…8: 24.2 Definitions and Generating Functions
9: 24.14 Sums
§24.14 Sums
►§24.14(i) Quadratic Recurrence Relations
… ►
24.14.4
►
24.14.5
…
►For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).