About the Project

arithmetic properties

AdvancedHelp

(0.001 seconds)

1—10 of 12 matching pages

1: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
2: Bibliography S
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • 3: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …
    4: 24.17 Mathematical Applications
    is the unique cardinal monospline of degree n having the least supremum norm F on (minimality property). … Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …
    5: Bibliography H
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • C. J. Howls and A. B. Olde Daalhuis (1999) On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order. Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 6: Bibliography M
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • X. Merrheim (1994) The computation of elementary functions in radix 2 p . Computing 53 (3-4), pp. 219–232.
  • mpmath (free python library)
  • M. E. Muldoon (1977) Higher monotonicity properties of certain Sturm-Liouville functions. V. Proc. Roy. Soc. Edinburgh Sect. A 77 (1-2), pp. 23–37.
  • 7: Bibliography B
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • T. Bountis, H. Segur, and F. Vivaldi (1982) Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A (3) 25 (3), pp. 1257–1264.
  • R. P. Brent (1978a) A Fortran multiple-precision arithmetic package. ACM Trans. Math. Software 4 (1), pp. 57–70.
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • 8: Bibliography G
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • D. Goldberg (1991) What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23 (1), pp. 5–48.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • B. Grammaticos, A. Ramani, and V. Papageorgiou (1991) Do integrable mappings have the Painlevé property?. Phys. Rev. Lett. 67 (14), pp. 1825–1828.
  • P. Groeneboom and D. R. Truax (2000) A monotonicity property of the power function of multivariate tests. Indag. Math. (N.S.) 11 (2), pp. 209–218.
  • 9: 25.15 Dirichlet L -functions
    §25.15(i) Definitions and Basic Properties
    This result plays an important role in the proof of Dirichlet’s theorem on primes in arithmetic progressions (§27.11). Related results are: …
    10: 3.6 Linear Difference Equations
    Unless exact arithmetic is being used, however, each step of the calculation introduces rounding errors. … The normalizing factor Λ can be the true value of w 0 divided by its trial value, or Λ can be chosen to satisfy a known property of the wanted solution of the form …