About the Project

argument a fraction

AdvancedHelp

(0.005 seconds)

11—20 of 26 matching pages

11: 19.14 Reduction of General Elliptic Integrals
If a 1 + b 1 y 2 = 0 , then …If a 1 + b 1 x 2 = 0 , then … The last reference gives a clear summary of the various steps involving linear fractional transformations, partial-fraction decomposition, and recurrence relations. It then improves the classical method by first applying Hermite reduction to (19.2.3) to arrive at integrands without multiple poles and uses implicit full partial-fraction decomposition and implicit root finding to minimize computing with algebraic extensions. …A similar remark applies to the transformations given in Erdélyi et al. (1953b, §13.5) and to the choice among explicit reductions in the extensive table of Byrd and Friedman (1971), in which one limit of integration is assumed to be a branch point of the integrand at which the integral converges. …
12: Bibliography H
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. Henrici (1977) Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-Interscience [John Wiley & Sons], New York.
  • C. S. Herz (1955) Bessel functions of matrix argument. Ann. of Math. (2) 61 (3), pp. 474–523.
  • M. H. Hirata (1975) Flow near the bow of a steadily turning ship. J. Fluid Mech. 71 (2), pp. 283–291.
  • 13: 15.19 Methods of Computation
    For z it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . For z it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± π i / 3 . This is because the linear transformations map the pair { e π i / 3 , e π i / 3 } onto itself. …
    §15.19(v) Continued Fractions
    In Colman et al. (2011) an algorithm is described that uses expansions in continued fractions for high-precision computation of the Gauss hypergeometric function, when the variable and parameters are real and one of the numerator parameters is a positive integer. …
    14: 20.11 Generalizations and Analogs
    It is a discrete analog of theta functions. If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … Ramanujan’s theta function f ( a , b ) is defined by … In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … A further development on the lines of Neville’s notation (§20.1) is as follows. …
    15: 19.5 Maclaurin and Related Expansions
    19.5.4_1 F ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
    19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
    19.5.4_3 Π ( ϕ , α 2 , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 ( m + 1 2 ; 1 2 , 1 ; m + 3 2 ; sin 2 ϕ , α 2 sin 2 ϕ ) k 2 m ,
    Coefficients of terms up to λ 49 are given in Lee (1990), along with tables of fractional errors in K ( k ) and E ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9). …
    16: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.
  • 17: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 18: DLMF Project News
    error generating summary
    19: 19.29 Reduction of General Elliptic Integrals
    where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … The reduction of I ( 𝐦 ) is carried out by a relation derived from partial fractions and by use of two recurrence relations. …Partial fractions provide a reduction to integrals in which 𝐦 has at most one nonzero component, and these are then reduced to basic integrals by the recurrence relations. A special case of Carlson (1999, (2.19)) is given by … For example, because t 3 a 3 = ( t a ) ( t 2 + a t + a 2 ) , we find that when 0 a y < x
    20: 4.21 Identities
    4.21.1 sin u ± cos u = 2 sin ( u ± 1 4 π ) = ± 2 cos ( u 1 4 π ) .
    4.21.1_5 A cos u + B sin u = A 2 + B 2 cos ( u ph ( A + B i ) ) , A , B ,
    §4.21(iii) Multiples of the Argument
    This result is also valid when n is fractional or complex, provided that π z π .
    4.21.35 sin ( n z ) = 2 n 1 k = 0 n 1 sin ( z + k π n ) , n = 1 , 2 , 3 , .