About the Project

argument principle

AdvancedHelp

(0.000 seconds)

6 matching pages

1: 1.10 Functions of a Complex Variable
Phase (or Argument) Principle
2: 18.39 Applications in the Physical Sciences
which is the quantum superposition principle. … … argument a) The Harmonic Oscillator … argumentwhere n is now the Bohr Principle Quantum Number.
3: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • B. Friedman (1990) Principles and Techniques of Applied Mathematics. Dover, New York.
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 4: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • Arblib (C) Arb: A C Library for Arbitrary Precision Ball Arithmetic.
  • 5: Bibliography L
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • S. Lewanowicz (1987) Corrigenda: “Recurrence relations for hypergeometric functions of unit argument” [Math. Comp. 45 (1985), no. 172, 521–535; MR 86m:33004]. Math. Comp. 48 (178), pp. 853.
  • L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a) Computations of spheroidal harmonics with complex arguments: A review with an algorithm. Phys. Rev. E 58 (5), pp. 6792–6806.
  • L. Lorch (1992) On Bessel functions of equal order and argument. Rend. Sem. Mat. Univ. Politec. Torino 50 (2), pp. 209–216 (1993).
  • H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl (1923) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Methuen and Co., Ltd., London.
  • 6: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • B. W. Shore and D. H. Menzel (1968) Principles of Atomic Spectra. John Wiley & Sons Ltd., New York.
  • K. M. Siegel and F. B. Sleator (1954) Inequalities involving cylindrical functions of nearly equal argument and order. Proc. Amer. Math. Soc. 5 (3), pp. 337–344.
  • K. M. Siegel (1953) An inequality involving Bessel functions of argument nearly equal to their order. Proc. Amer. Math. Soc. 4 (6), pp. 858–859.