About the Project

argument ±1

AdvancedHelp

(0.007 seconds)

1—10 of 137 matching pages

1: DLMF Project News
error generating summary
2: 15.20 Software
β–Ί
§15.20(ii) Real Parameters and Argument
β–Ί
§15.20(iii) Complex Parameters and Argument
3: 35.10 Methods of Computation
β–ΊSee Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ⁑ ( m ) applied to a generalization of the integral (35.5.8). …
4: 15.4 Special Cases
β–Ί
§15.4(ii) Argument Unity
β–Ί
§15.4(iii) Other Arguments
5: 4.29 Graphics
β–Ί
§4.29(i) Real Arguments
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 4.29.4: Principal values of arctanh ⁑ x and arccoth ⁑ x . ( arctanh ⁑ x is complex when x < 1 or x > 1 , and arccoth ⁑ x is complex when 1 < x < 1 .) Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 4.29.6: Principal values of arccsch ⁑ x and arcsech ⁑ x . … Magnify
β–Ί
§4.29(ii) Complex Arguments
β–ΊThe conformal mapping w = sinh ⁑ z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 ⁒ Ο€ , compare (4.28.8). …
6: 35.7 Gaussian Hypergeometric Function of Matrix Argument
β–Ί β–Ί
35.7.2 P Ξ½ ( Ξ³ , Ξ΄ ) ⁑ ( 𝐓 ) = Ξ“ m ⁑ ( Ξ³ + Ξ½ + 1 2 ⁒ ( m + 1 ) ) Ξ“ m ⁑ ( Ξ³ + 1 2 ⁒ ( m + 1 ) ) ⁒ F 1 2 ⁑ ( Ξ½ , Ξ³ + Ξ΄ + Ξ½ + 1 2 ⁒ ( m + 1 ) Ξ³ + 1 2 ⁒ ( m + 1 ) ; 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; Ξ³ , Ξ΄ , Ξ½ β„‚ ; ⁑ ( Ξ³ ) > 1 .
β–Ί
35.7.3 F 1 2 ⁑ ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ⁒ ( c a ) k ⁒ ( b ) k ⁒ ( c b ) k k ! ⁒ ( c ) 2 ⁒ k ⁒ ( c 1 2 ) k ⁒ ( t 1 ⁒ t 2 ) k ⁒ F 1 2 ⁑ ( a + k , b + k c + 2 ⁒ k ; t 1 + t 2 t 1 ⁒ t 2 ) .
β–ΊLet f : 𝛀 β„‚ (a) be orthogonally invariant, so that f ⁑ ( 𝐓 ) is a symmetric function of t 1 , , t m , the eigenvalues of the matrix argument 𝐓 𝛀 ; (b) be analytic in t 1 , , t m in a neighborhood of 𝐓 = 𝟎 ; (c) satisfy f ⁑ ( 𝟎 ) = 1 . … β–ΊSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
7: 35.8 Generalized Hypergeometric Functions of Matrix Argument
β–ΊThe generalized hypergeometric function F q p with matrix argument 𝐓 𝓒 , numerator parameters a 1 , , a p , and denominator parameters b 1 , , b q is … β–Ί β–Ί β–ΊMultidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. A similar result for the F 1 0 function of matrix argument is given in Faraut and Korányi (1994, p. 346). …
8: 35.6 Confluent Hypergeometric Functions of Matrix Argument
β–Ί β–Ί
35.6.2 Ξ¨ ⁑ ( a ; b ; 𝐓 ) = 1 Ξ“ m ⁑ ( a ) ⁒ 𝛀 etr ⁑ ( 𝐓 ⁒ 𝐗 ) ⁒ | 𝐗 | a 1 2 ⁒ ( m + 1 ) ⁒ | 𝐈 + 𝐗 | b a 1 2 ⁒ ( m + 1 ) ⁒ d 𝐗 , ⁑ ( a ) > 1 2 ⁒ ( m 1 ) , 𝐓 𝛀 .
β–Ί
35.6.3 L Ξ½ ( Ξ³ ) ⁑ ( 𝐓 ) = Ξ“ m ⁑ ( Ξ³ + Ξ½ + 1 2 ⁒ ( m + 1 ) ) Ξ“ m ⁑ ( Ξ³ + 1 2 ⁒ ( m + 1 ) ) ⁒ F 1 1 ⁑ ( Ξ½ Ξ³ + 1 2 ⁒ ( m + 1 ) ; 𝐓 ) , ⁑ ( Ξ³ ) , ⁑ ( Ξ³ + Ξ½ ) > 1 .
β–Ί β–Ί
9: 14.2 Differential Equations
β–ΊUnless stated otherwise in §§14.214.20 it is assumed that the arguments of the functions 𝖯 Ξ½ ΞΌ ⁑ ( x ) and 𝖰 Ξ½ ΞΌ ⁑ ( x ) lie in the interval ( 1 , 1 ) , and the arguments of the functions P Ξ½ ΞΌ ⁑ ( x ) , Q Ξ½ ΞΌ ⁑ ( x ) , and 𝑸 Ξ½ ΞΌ ⁑ ( x ) lie in the interval ( 1 , ) . …
10: 10.17 Asymptotic Expansions for Large Argument
β–Ί
10.17.4 Y Ξ½ ⁑ ( z ) ( 2 Ο€ ⁒ z ) 1 2 ⁒ ( sin ⁑ Ο‰ ⁒ k = 0 ( 1 ) k ⁒ a 2 ⁒ k ⁑ ( Ξ½ ) z 2 ⁒ k + cos ⁑ Ο‰ ⁒ k = 0 ( 1 ) k ⁒ a 2 ⁒ k + 1 ⁑ ( Ξ½ ) z 2 ⁒ k + 1 ) , | ph ⁑ z | Ο€ Ξ΄ ,
β–Ί
10.17.12 H Ξ½ ( 2 ) ⁑ ( z ) i ⁒ ( 2 Ο€ ⁒ z ) 1 2 ⁒ e i ⁒ Ο‰ ⁒ k = 0 ( i ) k ⁒ b k ⁑ ( Ξ½ ) z k , 2 ⁒ Ο€ + Ξ΄ ph ⁑ z Ο€ Ξ΄ .
β–Ί
10.17.14 | R β„“ ± ⁑ ( Ξ½ , z ) | 2 ⁒ | a β„“ ⁑ ( Ξ½ ) | ⁒ 𝒱 z , ± i ⁒ ⁑ ( t β„“ ) ⁒ exp ⁑ ( | Ξ½ 2 1 4 | ⁒ 𝒱 z , ± i ⁒ ⁑ ( t 1 ) ) ,