About the Project

approximation%20techniques

AdvancedHelp

(0.002 seconds)

4 matching pages

1: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • B. Friedman (1990) Principles and Techniques of Applied Mathematics. Dover, New York.
  • 2: 18.39 Applications in the Physical Sciences
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … Shizgal (2015) gives a broad overview of techniques and applications of spectral and pseudo-spectral methods to problems arising in theoretical chemistry, chemical kinetics, transport theory, and astrophysics. … The technique to accomplish this follows the DVR idea, in which methods are based on finding tridiagonal representations of the co-ordinate, x . … While s in the basis of (18.39.44) is simply a variational parameter, care must be taken, or the relationship between the results of the matrix variational approximation and the Pollaczek polynomials is lost, although this has no effect on the use of the variational approximations Reinhardt (2021a, b). … This equivalent quadrature relationship, see Heller et al. (1973), Yamani and Reinhardt (1975), allows extraction of scattering information from the finite dimensional L 2 functions of (18.39.53), provided that such information involves potentials, or projections onto L 2 functions, exactly expressed, or well approximated, in the finite basis of (18.39.44). …
    3: Bibliography C
  • P. J. Cameron (1994) Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge.
  • R. Cazenave (1969) Intégrales et Fonctions Elliptiques en Vue des Applications. Préface de Henri Villat. Publications Scientifiques et Techniques du Ministère de l’Air, No. 452, Centre de Documentation de l’Armement, Paris.
  • E. W. Cheney (1982) Introduction to Approximation Theory. 2nd edition, Chelsea Publishing Co., New York.
  • J. A. Cochran and J. N. Hoffspiegel (1970) Numerical techniques for finding ν -zeros of Hankel functions. Math. Comp. 24 (110), pp. 413–422.
  • W. J. Cody (1968) Chebyshev approximations for the Fresnel integrals. Math. Comp. 22 (102), pp. 450–453.
  • 4: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • D. L. Bosley (1996) A technique for the numerical verification of asymptotic expansions. SIAM Rev. 38 (1), pp. 128–135.