# analytic properties

(0.002 seconds)

## 1—10 of 67 matching pages

##### 1: 5.2 Definitions
5.2.1 $\Gamma\left(z\right)=\int_{0}^{\infty}e^{-t}t^{z-1}\mathrm{d}t,$ $\Re z>0$.
5.2.2 $\psi\left(z\right)=\Gamma'\left(z\right)/\Gamma\left(z\right),$ $z\neq 0,-1,-2,\dots$.
##### 2: 28.7 Analytic Continuation of Eigenvalues
###### §28.7 Analytic Continuation of Eigenvalues
28.7.4 $\sum_{n=0}^{\infty}\left(b_{2n+2}\left(q\right)-(2n+2)^{2}\right)=0.$
##### 4: William P. Reinhardt
Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. …
##### 5: 35.2 Laplace Transform
where the integration variable $\mathbf{X}$ ranges over the space ${\boldsymbol{\Omega}}$. …
##### 6: 4.14 Definitions and Periodicity
4.14.7 $\cot z=\frac{\cos z}{\sin z}=\frac{1}{\tan z}.$
##### 7: 15.2 Definitions and Analytical Properties
###### §15.2(ii) AnalyticProperties
Because of the analytic properties with respect to $a$, $b$, and $c$, it is usually legitimate to take limits in formulas involving functions that are undefined for certain values of the parameters. …