About the Project

agol assoc typeset honneur Number 0370-0348

AdvancedHelp

Did you mean agol assoc typeset honneur Number 370-348 ?

(0.004 seconds)

1—10 of 225 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 19.35 Other Applications
Elliptic integrals appear in lattice models of critical phenomena (Guttmann and Prellberg (1993)); theories of layered materials (Parkinson (1969)); fluid dynamics (Kida (1981)); string theory (Arutyunov and Staudacher (2004)); astrophysics (Dexter and Agol (2009)). …
3: Bibliography D
  • H. Davenport (2000) Multiplicative Number Theory. 3rd edition, Graduate Texts in Mathematics, Vol. 74, Springer-Verlag, New York.
  • J. B. Dence and T. P. Dence (1999) Elements of the Theory of Numbers. Harcourt/Academic Press, San Diego, CA.
  • J. Dexter and E. Agol (2009) A fast new public code for computing photon orbits in a Kerr spacetime. The Astrophysical Journal 696, pp. 1616–1629.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • 4: About the Project
    Since that time there have been a number of developments. … Ten Senior Assocate Editors have been named. …
    5: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • C. W. Clenshaw and F. W. J. Olver (1984) Beyond floating point. J. Assoc. Comput. Mach. 31 (2), pp. 319–328.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral. Proc. Glasgow Math. Assoc. 6, pp. 113–115.
  • 6: Bibliography B
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • D. Bleichenbacher (1996) Efficiency and Security of Cryptosystems Based on Number Theory. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich.
  • W. E. Bleick and P. C. C. Wang (1974) Asymptotics of Stirling numbers of the second kind. Proc. Amer. Math. Soc. 42 (2), pp. 575–580.
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • D. Bressoud and S. Wagon (2000) A Course in Computational Number Theory. Key College Publishing, Emeryville, CA.
  • 7: Roderick S. C. Wong
    Wong was elected a Fellow of the Royal Society of Canada in 1993, a Foreign Member of the Academy of Science of Turin, Italy, in 2001, a Chevalier dans l’Ordre National de la Légion d’Honneur in 2004, and a Member of the European Academy of Sciences in 2007. …
    8: Bibliography K
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. Kim and H. S. Kim (1999) Remark on p -adic q -Bernoulli numbers. Adv. Stud. Contemp. Math. (Pusan) 1, pp. 127–136.
  • D. E. Knuth (1986) METAFONT: The Program. Computers and Typesetting, Vol. D, Addison-Wesley, Reading, MA.
  • 9: 27.18 Methods of Computation: Primes
    §27.18 Methods of Computation: Primes
    An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer x is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
    10: 26.11 Integer Partitions: Compositions
    c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
    26.11.1 c ( 0 ) = c ( T , 0 ) = 1 .
    The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).