About the Project

accessory%20parameter

AdvancedHelp

(0.002 seconds)

1—10 of 444 matching pages

1: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations for the accessory parameter eigenvalues q m , see Fedoryuk (1991) and Slavyanov (1996). …
2: 31.18 Methods of Computation
The computation of the accessory parameter for the Heun functions is carried out via the continued-fraction equations (31.4.2) and (31.11.13) in the same way as for the Mathieu, Lamé, and spheroidal wave functions in Chapters 2830.
3: 31.4 Solutions Analytic at Two Singularities: Heun Functions
For an infinite set of discrete values q m , m = 0 , 1 , 2 , , of the accessory parameter q , the function H ( a , q ; α , β , γ , δ ; z ) is analytic at z = 1 , and hence also throughout the disk | z | < a . … The eigenvalues q m satisfy the continued-fraction equation
31.4.2 q = a γ P 1 Q 1 + q R 1 P 2 Q 2 + q R 2 P 3 Q 3 + q ,
4: 31.14 General Fuchsian Equation
31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
α β = j = 1 N a j q j .
The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . With a 1 = 0 and a 2 = 1 the total number of free parameters is 3 N 3 . …
31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
5: 31.2 Differential Equations
All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, { } , can be transformed into (31.2.1). The parameters play different roles: a is the singularity parameter; α , β , γ , δ , ϵ are exponent parameters; q is the accessory parameter. The total number of free parameters is six. … Then (suppressing the parameter k ) … Except for the identity automorphism, each alters the parameters.
6: 31.16 Mathematical Applications
It describes the monodromy group of Heun’s equation for specific values of the accessory parameter. …
31.16.5 P j = ( ϵ j + n ) j ( β + j 1 ) ( γ + δ + j 2 ) ( γ + δ + 2 j 3 ) ( γ + δ + 2 j 2 ) ,
31.16.6 Q j = a j ( j + γ + δ 1 ) q + ( j n ) ( j + β ) ( j + γ ) ( j + γ + δ 1 ) ( 2 j + γ + δ ) ( 2 j + γ + δ 1 ) + ( j + n + γ + δ 1 ) j ( j + δ 1 ) ( j β + γ + δ 1 ) ( 2 j + γ + δ 1 ) ( 2 j + γ + δ 2 ) ,
7: 31.11 Expansions in Series of Hypergeometric Functions
31.11.3 λ + μ = γ + δ 1 = α + β ϵ .
31.11.6 K j = ( j + α μ 1 ) ( j + β μ 1 ) ( j + γ μ 1 ) ( j μ ) ( 2 j + λ μ 1 ) ( 2 j + λ μ 2 ) ,
31.11.7 L j = a ( λ + j ) ( μ j ) q + ( j + α μ ) ( j + β μ ) ( j + γ μ ) ( j + λ ) ( 2 j + λ μ ) ( 2 j + λ μ + 1 ) + ( j α + λ ) ( j β + λ ) ( j γ + λ ) ( j μ ) ( 2 j + λ μ ) ( 2 j + λ μ 1 ) ,
31.11.12 P j 5 = ( α ) j ( 1 γ + α ) j ( 1 + α β + ϵ ) 2 j z α j F 1 2 ( α + j , 1 γ + α + j 1 + α β + ϵ + 2 j ; 1 z ) ,
In this case the accessory parameter q is a root of the continued-fraction equation …
8: 31.15 Stieltjes Polynomials
If z 1 , z 2 , , z n are the zeros of an n th degree Stieltjes polynomial S ( z ) , then every zero z k is either one of the parameters a j or a solution of the system of equations …
31.15.6 a j < a j + 1 , j = 1 , 2 , , N 1 ,
In this case the accessory parameters q j are given by If the exponent and singularity parameters satisfy (31.15.5)–(31.15.6), then for every multi-index 𝐦 = ( m 1 , m 2 , , m N 1 ) , where each m j is a nonnegative integer, there is a unique Stieltjes polynomial with m j zeros in the open interval ( a j , a j + 1 ) for each j = 1 , 2 , , N 1 . …
9: 20 Theta Functions
Chapter 20 Theta Functions
10: Guide to Searching the DLMF
If you don’t specify the font style or font accessories in the query, the style and accessories won’t matter in the search, but if you specify them, they will matter. …