About the Project

Whittaker%20equation

AdvancedHelp

(0.002 seconds)

9 matching pages

1: Bibliography D
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2003a) Uniform asymptotic approximations for the Whittaker functions M κ , i μ ( z ) and W κ , i μ ( z ) . Anal. Appl. (Singap.) 1 (2), pp. 199–212.
  • 2: Errata
  • Equation (18.34.1)
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 )

    This equation was updated to include the definition of Bessel polynomials in terms of Laguerre polynomials and the Whittaker confluent hypergeometric function.

  • Equation (28.8.5)
    28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) +

    Originally the in front of the 6 ! was given incorrectly as + .

    Reported 2017-02-02 by Daniel Karlsson.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (13.18.7)
    13.18.7 W 1 4 , ± 1 4 ( z 2 ) = e 1 2 z 2 π z erfc ( z )

    Originally the left-hand side was given correctly as W 1 4 , 1 4 ( z 2 ) ; the equation is true also for W 1 4 , + 1 4 ( z 2 ) .

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 3: 5.11 Asymptotic Expansions
    5.11.1 Ln Γ ( z ) ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 1 B 2 k 2 k ( 2 k 1 ) z 2 k 1
    Wrench (1968) gives exact values of g k up to g 20 . … The expansion (5.11.1) is called Stirling’s series (Whittaker and Watson (1927, §12.33)), whereas the expansion (5.11.3), or sometimes just its leading term, is known as Stirling’s formula (Abramowitz and Stegun (1964, §6.1), Olver (1997b, p. 88)). …
    5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
    For further information see Olver (1997b, pp. 293–295), and for other error bounds see Whittaker and Watson (1927, §12.33), Spira (1971), and Schäfke and Finsterer (1990). …
    4: Software Index
    5: 28.8 Asymptotic Expansions for Large q
    Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). … Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). … The approximations are expressed in terms of Whittaker functions W κ , μ ( z ) and M κ , μ ( z ) with μ = 1 4 ; compare §2.8(vi). …With additional restrictions on z , uniform asymptotic approximations for solutions of (28.2.1) and (28.20.1) are also obtained in terms of elementary functions by re-expansions of the Whittaker functions; compare §2.8(ii). Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
    6: 20.7 Identities
    For these and similar formulas see Lawden (1989, §1.4), Whittaker and Watson (1927, pp. 487–488), and Carlson (2011, §5). … Addendum: For a companion equation see (20.7.34). … See Lawden (1989, pp. 19–20). … In the following equations τ = 1 / τ , and all square roots assume their principal values. …
    20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
    7: 28.1 Special Notation
    m , n integers.
    a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
    ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
    The eigenvalues of Mathieu’s equation are denoted by …
    Table 28.1.1: Notations for parameters in Mathieu’s equation.
    Reference a q
    Abramowitz and Stegun (1964, Chapter 20)
    8: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • M. Newman (1967) Solving equations exactly. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 171–179.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 9: Bibliography O
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.