About the Project

Whipple sum

AdvancedHelp

(0.002 seconds)

6 matching pages

1: 16.4 Argument Unity
β–Ί
Whipple’s Sum
2: 17.7 Special Cases of Higher Ο• s r Functions
β–Ί
Gasper–Rahman q -Analog of Whipple’s F 2 3 Sum
β–Ί
Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)
3: Errata
β–Ί
  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • 4: Bibliography M
    β–Ί
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ⁒ ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • β–Ί
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • β–Ί
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • β–Ί
  • S. Moch, P. Uwer, and S. Weinzierl (2002) Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43 (6), pp. 3363–3386.
  • β–Ί
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 ⁒ r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • 5: 14.19 Toroidal (or Ring) Functions
    β–Ί
    §14.19(iv) Sums
    β–Ί
    14.19.6 𝑸 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) + 2 ⁒ n = 1 Ξ“ ⁑ ( ΞΌ + n + 1 2 ) Ξ“ ⁑ ( ΞΌ + 1 2 ) ⁒ 𝑸 n 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) ⁒ cos ⁑ ( n ⁒ Ο• ) = ( 1 2 ⁒ Ο€ ) 1 / 2 ⁒ ( sinh ⁑ ΞΎ ) ΞΌ ( cosh ⁑ ΞΎ cos ⁑ Ο• ) ΞΌ + ( 1 / 2 ) , ⁑ ΞΌ > 1 2 .
    β–Ί
    §14.19(v) Whipple’s Formula for Toroidal Functions
    6: Bibliography W
    β–Ί
  • X. Wang and A. K. Rathie (2013) Extension of a quadratic transformation due to Whipple with an application. Adv. Difference Equ., pp. 2013:157, 8.
  • β–Ί
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • β–Ί
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.