About the Project

Weierstrass elliptic functions

AdvancedHelp

(0.008 seconds)

21—30 of 33 matching pages

21: 22.1 Special Notation
22: 23.10 Addition Theorems and Other Identities
§23.10(i) Addition Theorems
§23.10(ii) Duplication Formulas
§23.10(iii) n -Tuple Formulas
§23.10(iv) Homogeneity
23: 23.12 Asymptotic Approximations
§23.12 Asymptotic Approximations
24: 23.22 Methods of Computation
§23.22 Methods of Computation
§23.22(ii) Lattice Calculations
25: 19.25 Relations to Other Functions
§19.25(vi) Weierstrass Elliptic Functions
Let 𝕃 be a lattice for the Weierstrass elliptic function ( z ) . …
19.25.35 z + 2 ω = ± R F ( ( z ) e 1 , ( z ) e 2 , ( z ) e 3 ) ,
19.25.37 ζ ( z + 2 ω ) + ( z + 2 ω ) ( z ) = ± 2 R G ( ( z ) e 1 , ( z ) e 2 , ( z ) e 3 ) ,
19.25.40 z + 2 ω = ± σ ( z ) R F ( σ 1 2 ( z ) , σ 2 2 ( z ) , σ 3 2 ( z ) ) ,
26: 32.13 Reductions of Partial Differential Equations
Depending whether A = 0 or A 0 , v ( z ) is expressible in terms of the Weierstrass elliptic function23.2) or solutions of P I , respectively. …
27: 20.11 Generalizations and Analogs
As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). …
28: 29.2 Differential Equations
we have …
29: Bibliography E
  • U. Eckhardt (1980) Algorithm 549: Weierstrasselliptic functions. ACM Trans. Math. Software 6 (1), pp. 112–120.
  • 30: Software Index