Weierstrass M-test
(0.002 seconds)
11—20 of 36 matching pages
11: 23.21 Physical Applications
§23.21 Physical Applications
… ►The Weierstrass function plays a similar role for cubic potentials in canonical form . … ►§23.21(ii) Nonlinear Evolution Equations
… ►§23.21(iii) Ellipsoidal Coordinates
… ►where are the corresponding Cartesian coordinates and , , are constants. …12: 23.6 Relations to Other Functions
…
►
§23.6(i) Theta Functions
… ►§23.6(ii) Jacobian Elliptic Functions
… ►§23.6(iii) General Elliptic Functions
… ►§23.6(iv) Elliptic Integrals
… ►13: 23.5 Special Lattices
…
►
§23.5(ii) Rectangular Lattice
… ►In this case the lattice roots , , and are real and distinct. … ►§23.5(iii) Lemniscatic Lattice
… ►§23.5(iv) Rhombic Lattice
… ►§23.5(v) Equianharmonic Lattice
…14: 23.11 Integral Representations
15: 23.19 Interrelations
16: 23.12 Asymptotic Approximations
17: 23.8 Trigonometric Series and Products
…
►
§23.8(i) Fourier Series
… ►§23.8(ii) Series of Cosecants and Cotangents
… ►
23.8.3
…
►where in (23.8.4) the terms in and are to be bracketed together (the Eisenstein convention or principal value: see Weil (1999, p. 6) or Walker (1996, p. 3)).
…
►